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Abstract

The theory of global characters of semisimple Lie groups as invariant eigendistributions, proposed
by Harish-Chandra, is used to determine explicitly the global characters ofSUp,q . It is shown that
they are invariant, tempered eigendistributions onSUp,q . The adjoint invariant distributions on
SUp,q are studied in detail. For the special case ofSU1,1, these global characters reduce to the
results already obtained forSU1,1. The paper contains several new results pertaining to the group
SUp,q and these results are explicitly used. © 2002 Published by Elsevier Science B.V.
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1. Introduction

Let (ρ,H) denote an irreducible unitary representation of a real semisimple Lie group
G over a Hilbert spaceH. Let g be the Lie algebra ofG. Let K be a maximal compact
subgroup ofG andk be its corresponding Lie algebra. Letgc be the complexification ofg.
Then from the representation(ρ,H), one obtains the(gc,K)-modules, which correspond
to two representations: one ofg and the other ofK, the latter being the restriction of the
algebra representation ofg to k. One of Harish-Chandra’s principal results [6] was that the
spaceHk ofK-finite vectors in an irreducible unitary representation(ρ,H) is an irreducible
(gc,K)-module, and that the mappingρ → Hk induces a bijection of the unitary dualĜ
with the set of isomorphism classes of irreducible unitary(gc,K)-modules. Furthermore,
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he proved [7] that any irreducible(gc,K)-module is of the formHk for some irreducible
representation(ρ,H) which has an infinitesimal character, showing that the formulation
of an arbitrary irreducible representation ofG is built into the notion of an irreducible
(gc,K)-module.

An irreducible unitary representation(ρ,H) of a locally compact groupG is said
to be square integrable onG if it has a non-zero, square integrable matrix coefficient
(matrix element), given by the functionx �→ (ρxu, v), x ∈ G, u, v ∈ H. Following
Harish-Chandra, one defines for a representation(ρ,H) of a semisimple Lie groupG the
operatorρ(f ) = ∫

G
f (x)ρx dµ(x), f ∈ C∞c (G), which is of trace class. Furthermore, the

linear functionalTω : f �→ tr(ρ(f )) is a distribution onG, whereω is the equivalence
class containing the representation(ρ,H). Tω is called thecharacterof the representa-
tions in ω and it determinesω completely. Also,Tω is an invariant distribution, i.e., a
distribution that is invariant under all inner automorphisms ofG. If {ui}i≥1 is an orthonor-
mal basis ofH, then forx ∈ G and f ∈ C∞c (G), Tω(f ) =

∑
i≥1

∫
G
(ρxui, ui)f (x)

dµ(x).
Let Z denote the center of the universal enveloping algebraU(g) [2,5], and letχω ∈

Hom(Z,C) denote the infinitesimal character ofω. Then forz ∈ Z andx ∈ G one has the
equationz(ρxui, ui) = χω(z)(ρ(x)ui, ui), i ≥ 1 and hence forf ∈ C∞c (G), zTω(f ) =
χω(z)Tω(f ). Thus,Tω is aninvariant eigendistributiononG, andχω(z) is the eigenvalue
of Z [8,10].

Furthermore, Harish-Chandra showed that distinct series of representations induced by a
complete system of mutually non-conjugate Cartan subgroups [25] would fall into distinct
classes in the unitary dualĜ. He further showed [11,12] thatG has a discrete series if and
only if it has a compact Cartan subgroup and that the latter exists if and only if the rank ofG

is equal to the rank ofK. Also, Harish-Chandra established that the representations induced
by a Cartan subgroupH can be parameterized by the parameters of the characters ofH ′, the
set of all regular elements ofH , and he determined these characters as invariant eigendistri-
butions. In particular, for a compact Cartan subgroup, he proved that the corresponding dis-
crete series of representations are square integrable and that this series of representations is
complete.

The discrete and continuous series of irreducible unitary representations ofSUp,q , as-
sociated with the(min{p, q} + 1) non-conjugate Cartan subgroups, have been explicitly
obtained in [27,28,31]. In [4], a class of degenerate representations ofSUp,q and the trace
of those representations are obtained. The invariant eigendistributions of Laplace opera-
tors ofSUp,q associated with discrete series and an expression for the Plancherel formula
for SUp,q have been obtained in [19–22]. The groupSUp,q has one discrete series of
representations, associated with the compact Cartan subgroup, and min{p, q} number of
continuous series of representations, associated with the min{p, q} non-compact Cartan
subgroups.

The organization of this paper is as follows. In Section 2, basic algebraic structures of
SUp,q are discussed and relevant notations are established. By theKostant–Sugiura theo-
rem [25,29], there exist(min{p, q} + 1) non-conjugate Cartan subgroups forSUp,q ; these
subgroups are obtained explicitly in Section 3 through root structures ofSUp,q . In Section
4, the characters are introduced and various properties of Harish-Chandra’sdensity func-
tions∆, some of which are new, have been derived. In Sections 5 and 6, some basic and
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relevant properties of the universal enveloping algebra ofsl(n,C) are discussed, and its
relation to the symmetric algebra of differential operators is established. TheHarish-
Chandra homomorphismγ , related to each Cartan subalgebra, is obtained in Section 7,
and after introducing representation parameters in Section 8, a representation of the al-
gebra ofSUp,q on theGårding domain is defined, and some of its basic properties are
given in Section 9. Theglobal charactersof SUp,q associated with each Cartan subgroup
Hj , 0 ≤ j ≤ min{p, q}, are explicitly obtained in Sections 10 and 11. Theorem 11.1 gives
the main results. Our results agree with the case forj = 0 obtained in [4,19–21], and for
SU1,1 obtained in [14], the latter is found to be useful in scattering theory. It is then shown
in Section 12 that these global characters are the invariant eigendistributions as defined by
Harish-Chandra, and that these eigendistributions are tempered. In Section 13, the invariant
eigendistributions of the contragradiant representations ofSUp,q are obtained, and the result
is given in Theorem 13.1. Finally, the adjoint invariant eigendistributions are discussed in
Section 14, and some of their properties are proved. We have given here and there some
materials, which are somewhat expository in nature, in order to establish notations and defi-
nitions and to provide the basic concepts required to prove and to foster understanding of the
main results.

2. Basic algebraic structures and notation

Let SUp,q, p + q = n, denote the pseudounitary, unimodular Lie group defined in
matrix realization bySUp,q = {g ∈ Mn×n(C) : det(g) = 1, g∗J0g = J0}, where∗
denotes conjugate transpose andMn×n(C), homeomorphic to Hom(Cn,Cn), denotes a
matrix manifold of(n × n) matrices overC. For definiteness, we takep ≤ q throughout.
Themetric operatorJ0 is given by

J0 =
(
Ip 0

0 −Iq

)

with Im an (m × m) unit matrix. The matrix operatorJ0 is bounded, self-adjoint(J ∗0 =
J0), involutory (J 2

0 = In), and unitary(J ∗0 = J −1
0 ). The groupSUp,q is a non-compact,

simple Lie group which leaves the Hermitian inner product〈u,J0u〉 =
∑p

n=1ūkuk −∑q

k=1ūp+kup+k ∀u ∈ H invariant, whereH is ann-dimensional Hilbert space overC.
That is, one has for allg ∈ SUp,q and for allu ∈ H, 〈u,J0u〉 = 〈gu,J0gu〉. For the
orthonormal basis{e1, . . . , en} of H, whereek is then-tuple (0, . . . ,0,1k,0, . . . ,0), the
inner product satisfies〈ej ,J0ek〉 equals 0 ifj �= k, equals 1 if 1≤ j = k ≤ p, and
equals−1 if p + 1 ≤ j = k ≤ n = p + q. The center ofSUp,q is given byZ(SUp,q) =
{eι(2π/n)m In : m = 0,1, . . . , n− 1, ι = √−1}. HenceSUp,q is connected, but not simply
connected. Furthermore, the groupSUp,q is reductive since it is closed under conjugate
transpose.

It is possible to consider different matrix realizations ofSUp,q by redefining the metric
operatorJ0. For example, one may define the metric operatorsJk, 0 ≤ k ≤ p, and obtain
matrix realizations ofSUp,q asSUkp,q = {g ∈ Mn×n(C) : det(g) = 1, g∗Jkg = Jk},
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where

Jk =




0 0 Îk

0

(
Ip−k 0

0 −Iq−k

)
0

Îk 0 0




with the (k × k) matrix Îk = (imn) defined byimn = 1 if m + n = k + 1 and= 0
otherwise. There exists orthogonal transformationsOk, 0 ≤ k ≤ p, which are elements of
the orthogonal groupOp+q , under which the metric operatorJ0 transforms asO−1

k J0Ok =
Jk and for which [O0,J0] = 0. A matrix realization ofOk is given explicitly in [27]. Now,
for everyg(k) ∈ SUkp,q one hasOkg(k)O∗k = g0 ∈ SU0

p,q = SUp,q . The groupSUkp,q , for
eachk, acts on the Hilbert spaceHk, leaving the Hermitian inner product〈u,Jku〉, u ∈ Hk,
invariant. That is, for allg ∈ SUkp,q , one has〈gu,Jkgu〉 = 〈u,Jku〉, 1 ≤ k ≤ p. In what

follows the realization ofSUp,q will correspond to the realization ofSU0
p,q .

The groupSUp,q is a subgroup of the special linear groupSLn(C) = {g ∈ Mn×n(C) :
det(g) = 1}, which is a subgroup of the general linear groupGLn(C) = {g ∈ Mn×n(C) :
det(g) �= 0}. The Lie algebras ofSLn(C) andGLn(C) are denoted, respectively, bysln(C)
andgln(C). Specifically,sln(C) is defined bysln(C) = {X ∈ Mn×n(C) : tr(X) = 0}. The
Lie algebra ofSUp,q , denoted bysup,q , is defined by

sup,q =
{
X =

(
X11 X12

X21 X22

)
∈ Mn×n(C) : X∗jj = −Xjj , X

∗
12 = X21, tr(X) = 0

}

= {X ∈ sln(C) : J0X
∗J0 = −X},

whereX11 is a(p × p) matrix.
The Lie algebrasup,q is a non-compact real form ofsln(C). Specifically, ifZ ∈ sln(C),

then(Z − J0Z
∗J0) and(−ιZ − ιJ0Z

∗J0), ι =
√−1, are elements ofsup,q , i.e.,Z =

1
2(Z −J0Z

∗J0)+ ι1
2(−ιZ − ιJ0Z

∗J0), andsln(C) = {Z = X+ ιY : X, Y ∈ sup,q} and
is the complexification ofsup,q [16]. In general, any realization ofsln(C) is isomorphic to
the complexification ofsup,q .

Let θ be an involutive mapping ofsln(C) onto itself, defined byθ(X + ιY ) = −(X∗ −
ιY ∗)∀X, Y ∈ sup,q . The action ofθ on sup,q is given by

θ(X) =
(
Ip 0

0 −Iq

)
X

(
Ip 0

0 −Iq

)
∀X ∈ sup,q .

The+1 eigenspace ofθ is given by the subalgebra

k =
{
X =

(
X11 0

0 X22

)
∈ sup,q

}
= s(up ⊕ uq),

and the−1 eigenspace ofθ is given by the vector space

p =
{
X =

(
0 X12

X21 0

)
∈ sup,q

}
.
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Thusθ induces the decomposition ofsup,q given bysup,q = k⊕ p. The subalgebrak and
the subspacep satisfy [k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k, and also, the subalgebrak is the
maximal compact subalgebra ofsup,q .

The decomposition ofsup,q induced byθ is aCartan decomposition. Thecompact real
form sun of sln(C), given bysun = {X ∈ sln(C) : X∗ = −X}, satisfies the properties:
θ(sun) ⊆ sun, k = sup,q ∩ sun, p = sup,q ∩ ιsun. The involutive automorphismθ is a
Cartan involution. This Cartan decomposition of the Lie algebrasup,q induces a Cartan
decomposition of the Lie groupSUp,q , which is given bySUp,q = K exp(p), whereK =
exp(k) = S(Up ⊗ Uq) = SUp ⊗ U1⊗ SUq is the maximal compact subgroup ofSUp,q .

The decomposition ofsup,q into k⊕ p induces the following similar decomposition on
sln(C). As the complexification ofsup,q ,

sln(C)= {Z = X + ιY : X, Y ∈ sup,q}
= {Z = (Xk +Xp)+ ι(Yk + Yp) : Xk, Yk ∈ k, Xp, Yp ∈ p}
= {Z = Xc + Yc : Xc = Xk + ιYk ∈ kc, Yc = Xp + ιYp ∈ pc}.

That is,sln(C) = kc ⊕ pc, andkc andpc satisfy [kc, kc] ⊆ kc, [kc, pc] ⊆ pc, [pc, pc] ⊆ kc.
TheIwasawa decompositionof sln(C) is given bysln(C) = sun⊕a⊕n, wherea consists

of those members ofsln(C)with real entries on the diagonal and with zeros off the diagonal,
andn consists of those members ofsln(C) that have zeros on and below the diagonal.

The Lie algebrasln(C) can also be decomposed assln(C) = n− ⊕ hd ⊕ n+ (triangular
decomposition), wheren−(n+) is the nilpotent Lie algebra of strictly lower (upper) trian-
gular matrices andhd, an abelian Lie algebra of diagonal matrices, is aCartan subalgebra
of sln(C). That is,

hd = {Λ = diag[λ1, . . . , λn] : λi ∈ C, tr(Λ) = 0}.

TheBorel subalgebrab, which is a solvable subalgebra ofsln(C), is given byb = hd⊕n+,
and its derived algebra [b, b] is n+. Any subalgebra ofsln(C) containing a Borel subalgebra
is aparabolic subalgebraof sln(C).

3. Root structures and Cartan subgroups

LetEij , 1≤ i, j ≤ ndenote matrix units which are(n×n)matrices with 1 at theij th entry
and zero elsewhere. That is, thekl element ofEij is given in terms of the Kronecker delta by
δikδjl . Then [Eij , Ekl] = δjkEil − δliEkj. A basis ofsln(C) can be given in terms of matrix
unitsEij by defining the set{Ek,Eij : i �= j, i, j = 1, . . . , n, k = 1, . . . , n − 1; Ek :=
Ekk−Enn, En = 0}. The set{Ek}n−1

k=1 forms a basis of the Cartan subalgebrahd of sln(C).
It will be useful in what follows to consider the following alternative basis forsln(C). Let,
for i, j = 1, . . . , n,

Xi = Ei − 1

n

n−1∑
k=1

Ek, Xij := Eij , i �= j. (3.1)



18 R. Wilson, E. Tanner / Journal of Geometry and Physics 41 (2002) 13–56

Note thatX1 + · · · + Xn = 0. Clearly, the set of allXij , i �= j with any (n − 1) of
theXk forms a basis ofsln(C). These basis elements satisfy the commutation relations
[Xij , Xkl] = δjkXil − δliXkj, Xmm= Xm.

Let us now consider the root structure ofsln(C) relative to the Cartan subalgebrahd.
Denote byh∗d the dual space consisting of allC-valued linear formsαu onhd, such that

αu(Λ) =
n∑

m=1

umλm, Λ ∈ hd, (3.2)

whereu = (u1, . . . , un) ∈ Cn. One has thatα−u = −αu. Letgαu denote, for everyαu ∈ h∗d,
the linear subspace ofsln(C) defined bygαu = {Y ∈ sln(C) : ad(Λ)Y = αu(Λ)Y ∀Λ ∈
hd}. Note thatgαu = hd whenαu ≡ 0. Now define the subsetR of h∗d by

R = {αu ∈ h∗d : αu �≡ 0, gαu �= {0}}
= {αu ∈ h∗d : u = (0, . . . ,0,1i ,0, . . . ,0,−1j ,0, . . . ,0), 1≤ i �= j ≤ n}, or

{αu ∈ h∗d : u = (0, . . . ,0,−1i ,0, . . . ,0,1j ,0, . . . ,0), 1≤ i �= j ≤ n}. (3.3)

The setR is finite and its elements are the non-zero roots ofsln(C) relative tohd. Thus,R
is called the root system of the pair(sln(C), hd). For every rootαu, gαu is of dimension 1.
One has then theroot space decompositionof sln(C) given by

sln(C) = hd ⊕
⊕∑

αu∈R
gαu = hd ⊕

∑
1≤i,j≤n
i �=j

{CEij }. (3.4)

Allowing αij to denote the formαu whereu = (0, . . . ,0,1i ,0, . . . ,0,−1j ,0, . . . ,0), one
definesR+ to be the collection{αij : 1 ≤ i < j ≤ n}. R+ is the set of positive roots
of sln(C) relative tohd, each of which can be written as the sum of fundamental roots
αi i+1, 1 ≤ i ≤ n − 1. Clearly,R = R+ ∪ (−R+), where−R+ is the collection of all
negative roots. That is−R+ = {−αij = αji : 1 ≤ i < j ≤ n}. Thus each non-trivial
linear subspacegαu is given bygαij = {CEij }i �=j . Note also that [Λ,Eij ] = (λi − λj )Eij =
αij (Λ)Eij ∀Λ ∈ hd.

A rootαij is called compact ifi, j ≤ p or i, j > p, otherwise it is said to be non-compact.
The set of all compact roots is denoted byRc. Eachgαij for whichαij ∈ Rc is a subspace of
kc, and eachgαij for whichαij ∈ R − Rc is a subspace ofpc.

As defined in [16], two rootsαkl, βst ∈ R, 0 ≤ k �= l ≤ n, 0 ≤ s �= t ≤ n are said to
bestrongly orthogonalif αkl ± βst /∈ R. LetΓj , 0 ≤ j ≤ p be a subset ofR+ ∩ (R − Rc)

consisting only ofj strongly orthogonal positive non-compact roots(Γ0 = ∅). Such a subset
is called a system of strongly orthogonal positive non-compact roots. Two such systemsΓj1

andΓj2 are said to beequivalentif
∑

αkl∈Γj1 RΛαkl =
∑

αkl∈Γj2 RΛαkl , whereΛαkl is the
unique element inhd such that the Killing formB(Λ,Λαkl) = 2n tr(ΛΛαkl) = αkl(Λ) for
all Λ ∈ hd. That is,Λαkl = diag[0, . . . ,0,1k/2n,0, . . . ,0,−1l/2n,0, . . . ,0]. Two such
systems are said to beconjugateif there exists an elementw in the Weyl group of the pair
(sln(C), hd) such thatwΓj1 is equivalent toΓj2. Such an elementw exists wheneverj1 = j2.
This conjugacy induces an equivalence relation on the set of allΓj , 0 ≤ j ≤ p. One can
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see that, forp ≤ q, there exist(p+ 1) such conjugacy classes, denoted byΓ̄j , 0 ≤ j ≤ p.
For example, an elementsΓj of Γ̄j can be given by, for 1≤ j ≤ p, Γj = {αkl : k =
p + 1−m, l = p +m, 1≤ m ≤ j}, andΓ0 = ∅.

We now define subspaces in terms of the elementsΓj of Γ̄j . That is, for 1≤ j ≤ p,
let hv

j =
∑

αkl∈Γj R(Eαkl + E−αkl), whereEαkl , denotingEkl, be a subspace ofp in the
Cartan decomposition ofsup,q . Clearly, the subspaceshv

j determined by different elements

Γj ∈ Γ̄j form a conjugacy class under the actions of the Weyl groupW(sln(C), hd). That
is, there existsw ∈ W(sln(C), hd) such that, for 1≤ j ≤ p,

hv
j =

∑
αkl∈Γ(j)

R(Eαkl + E−αkl)
∼=

∑
αkl∈wΓ(j)

R(Eαkl + E−αkl)
∼= w(hv

j )
∼= hv′

j .

Choosing the elementsΓj as above, the subspaceshv
j , 1 ≤ j ≤ p then consist ofn × n

matrices of the form


tj

t1

t1

tj



,

wheret1, . . . , tj ∈ R, and, one defineshv
0 as a singleton containing the zero matrix. Note

also that the eigenvalues of ad(X) for anyX ∈ hv
j are all real.

The abelian subalgebrasht
j , 0 ≤ j ≤ p are defined by

ht
j = {diag[ιφ1, . . . , ιφp−j , ιθj , . . . , ιθ1, ιθ1, . . . , ιθj , ιψq−j , . . . , ιψ1] : φk, θk, ψk

∈ R, φ1+ · · · + φp−j + 2(θj + · · · + θ1)+ ψq−j + · · · + ψ1 = 0}.

Note that the eigenvalues of ad(X) for anyX ∈ ht
j are all imaginary. Eachhj = ht

j⊕hv
j , 0 ≤

j ≤ p is a maximal abelian subalgebra ofsup,q . The subalgebrasht
j and the subspaceshv

j

are often called thetoroidal and thevectorparts ofhj , respectively. The real dimension of
hj is (n − 1), which is equal to the rank ofsup,q . Also, dim(hj ∩ k) = (n − j − 1) and
dim(hj ∩ p) = j . The algebrahj is maximal abelian in the sense that there exists no other
abelian subalgebra ofsup,q with real dimension greater than the real dimension ofhj . Each
hj satisfies the property that, for everyX ∈ hj , ad(X) is a semisimple (diagonalizable)
endomorphism ofsup,q . That is, the subalgebrashj areCartan subalgebrasof sup,q . We
say that two Cartan subalgebrash′j , h

′′
j are conjugate if their respective vector parts lie

in the same conjugacy class. Equivalently, one may say thath′j andh′′j are conjugate if
h′′j = Ad(g)h′j for someg ∈ SUp,q . Thus there exist(p + 1) conjugacy classes of Cartan
subalgebras forsup,q . This is an instance of the Kostant–Sugiura Theorem [25,29], which
follows the following theorem.
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Theorem 3.1. There is a one-to-one correspondence between the conjugacy classes of
Cartan subalgebras in a real semisimple Lie algebrag and the conjugacy classes of strongly
orthogonal systems of positive non-compact roots of the pair(gc, hc), wheregc is the
complexification ofg andhc is a Cartan subalgebra ofgc.

Because any two Cartan subalgebras ofsln(C) are conjugate under an automorphism
of sln(C), the complexifications of the Cartan subalgebras ofsup,q , regardless of their
conjugacy class, fall into the single conjugacy class of Cartan subalgebras insln(C) (which
containshd). Also, wherehc

j is any Cartan subalgebra ofsln(C), the construction of roots
αu(j) of (sln(C), hc

j ) exactly parallels the construction given earlier of the rootsαu of
(sln(C), hd). In particular, Eq. (3.2) would become

αu(j) (X(j)) =
n∑

m=1

u(j)mλ(j)m, X(j) ∈ hc
j , (3.5)

whereu(j) = (u(j)1, . . . , u(j)n) ∈ Cn andλ(j)m are the eigenvalues ofX(j) under some
suitable ordering.

The subgroup ofSUp,q generated byht
j is a toroidal groupdenoted byH t

j = exp(ht
j ),

and the subgroup generated byhv
j is a vector groupdenoted byH v

j = exp(hv
j ). In terms

of the toroidal groupH t
j and the vector groupH v

j one hasHj = H v
j H

t
j . Thus, forp ≤ q,

the groupSUp,q has(p + 1) conjugacy classes of Cartan subgroups, denoted byH̄j , 0 ≤
j ≤ p. That is, the elements of a class̄Hj are conjugate under an inner automorphism of
SUp,q . One may realize a representative elementHj of the classH̄j byHj = {h(j)} such
that

h(j) =




Ip−j

coshtj sinhtj

. . .

cosht1 sinht1

sinht1 cosht1

. . .

sinhtj coshtj

Iq−j




×diag[eιφ1, . . . ,eιφp−j ;eιθj , . . . ,eιθ1;eιθ1, . . . ,eιθj ;eιψq−j , . . . ,eιψ1], (3.6)

where
∑p−j

n=1φn + 2
∑j

n=1θn +
∑q−j

n=1ψn = 0, andtj , φn, θn, ψn ∈ R. Thus after multipli-
cation, one has
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h(j) =




eιφ1

. . .

eιφp−j

ω+j ω−j
. . .

ω+1 ω−1
ω−1 ω+1

. . .

ω−j ω+j
eιψq−j

. . .

eιψ1




,

(3.7)

whereω±k = 1
2eιθk (etk ± e−tk ). The matricesh(j) are normal matrices sinceh∗(j)h(j) =

h(j)h
∗
(j). The eigenvalues ofh(j) ∈ Hj , 0 ≤ j ≤ p are given as the elements of then-tuple

(h(j)1, . . . , h(j)n)

= (eιφ1, . . . ,eιφp−j ;ezj , · · · ,ez1;e−z̄1, . . . ,e−z̄j ;eιψq−j , . . . ,eιψ1), (3.8)

wherezm = ιθm + tm, 1 ≤ m ≤ j . Clearly, the Cartan subgroupHj is homeomorphic to
Tn−j × Rj , whereTm is anm-dimensional torus.

4. Characters and density functions

Let H be a Cartan subgroup of a semisimple real Lie groupG and letGc, Hc denote,
respectively, the complexification ofG andH . Letg, h, gc, andhc denote the corresponding
Lie algebras, and letu be a compact real form ofgc. Also, letHα ∈ ι(hc ∩ u) such that
B(X,Hα) = α(X) for all X ∈ hc, whereα is a root of(gc, hc). Then, with this notation,
one has the following well-known theorem by Weyl [7].

Theorem 4.1. WhereGc is simply connected andλ is any linear function onhc, there exists
at most one character(complex analytic homomorphism) ξλ ofHc such thatξλ(exp(X)) =
eλ(X), X ∈ hc if and only if2λ(Hα)/α(Hα) is an integer for every rootα of (gc, hc).

This condition onλ is equivalent to the condition thatλ(X) ∈ 2πιZ, wheneverX satisfies
eX = 1. Clearly, whereλ is a root of(gc, hc), ξλ is defined. Also, whereR+ denotes the
set of all positive roots of(gc, hc), andδ = 1

2

∑
α∈R+α, the characterξδ exists. According

to Harish-Chandra [7],G is said to beacceptableif ξδ can be defined onHc. Thus in the
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above case, whereGc is simply connected,G is acceptable. Also, a linear functionalλ of
hc that is real-valued onh is said to bedominantif 2λ(Hα)/α(Hα) ≥ 0∀α ∈ R+.

Let us now considersln(C). Let hc
j denote the complexification ofhj . Becausesln(C)

is simply connected,SUp,q is acceptable. Hence, one may define a root of(SUp,q,Hj ) as
the characterξ(j)αu(j) = ξ̂(j)αu(j)

◦ ι of Hj into C − {0} corresponding to the rootαu(j) of

(sln(C), h
c
j ). Hereι is the inclusion mapping fromHj into its complexificationH c

j (which

is given by eh
c
j ), andξ̂(j)αu(j) is the character ofH c

j corresponding toαu(j) . That is, from
Theorem 4.1,

ξ(j)αu(j)
(h(j)) = eαu(j) (ln(h

c
(j)
))
, hc

(j) = ι(h(j)). (4.1)

We consider the following four cases:

1. The set of allpositive rootsof (SUp,q,Hj ) is given by

R+(j) = {ξ(j)kl : 1≤ k < l ≤ n, kl denotesαu(j) , u(j)

= (0, . . . ,0,1k,0, . . . ,0,−1l ,0, . . . ,0)},
|R+(j)| = 1

2n(n− 1), ξ(j)kl(h(j)) = h(j)kh
−1
(j)l , (4.2)

whereh(j)k andh(j)l are eigenvalues ofHj under some suitable ordering.
2. The subset of allcompact positive rootsof (SUp,q,Hj ), which are necessarily imaginary

(i.e., the corresponding root of(sln(C), hc
j ) has an imaginary image), is given by

R+(j)c = {ξ(j)kl, ξ(j)mn : 1≤ k < l ≤ p − j, 1≤ n < m ≤ q − j},
|R+(j)c| = 1

2n(n− 1)− pq+ j2− j (n− 1), ξ(j)kl(h(j))

= h(j)kh
−1
(j)l = ei(φ(j)k−φ(j)l ), ξ(j)mn(h(j)) = h(j)mh

−1
(j)n = ei(ψ(j)m−ψ(j)n).

(4.3)

3. The subset of allreal positive rootsof (SUp,q,Hj ), which are necessarily singular
(non-compact), is given by

R+(j)R = {ξ(j)kl : k = p − j + s, l = p + j − s + 1, 1≤ s ≤ j},
|R+(j)R| = j, ξ(j)kl(h(j)) = h(j)kh

−1
(j)l = ez(j)m+z̄(j)m = e2t(j)m, m = 1

2(l − k + 1).

(4.4)

4. The subset of allsingular imaginary positive rootsof (SUp,q,Hj ) is given by

R+(j)SI = {ξ(j)kl : 1≤ k ≤ p − j, p + j + 1≤ l ≤ n},
|R+(j)SI| = pq− j (n− j), ξ(j)kl(h(j)) = h(j)kh

−1
(j)l = ei(φ(j)k−ψ(j)l ). (4.5)

All the remaining 2j (n − j − 1) positive roots of(SUp,q,Hj ) aresingular complexand
they are given by the elements of the complement of(R+(j)c ∪ R+(j)R ∪ R+(j)SI) in R+(j).
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The Weyl group of(SUp,q,Hj ) is defined byW(SUp,q,Hj ) = {σ |Hj : σ ∈ Inn(SUp,q),
σ (Hj ) = Hj }, which is isomorphic to the group generated by the elements in the set
Sp−j ∪ Sq−j ∪ Sj ∪ P(j), where

1. Sp−j is the symmetric group consisting of all permutations of eiφk , 1≤ k ≤ p − j .
2. Sq−j is the symmetric group consisting of all permutations of eiψk , 1≤ k ≤ q − j .
3. Sj is the symmetric group consisting of all permutations of thej pairs(ezk ,e−z̄k ), 1≤

k ≤ j . That is, the permutation of the pair(ezk ,e−z̄k ) and (ezl ,e−z̄l ) corresponds to
ezk ↔ ezl and e−z̄k ↔ e−z̄l .

4. P(j) is the power set of the set consisting of thej permutations of ezk and e−z̄k , 1 ≤
k ≤ j (i.e., the change of sign ontk in zk = tk + iθk and−z̄k = −tk + iθk).

Thus, we have|W(SUp,q),Hj )| = (p− j)!(q− j)!j !2j . Now, lettingαu(j) = δ, where,
for sln(C),

δ = 1

2

n∑
i,j=1
i<j

αij = 1

2

n∑
k=1

(n− 2k + 1)ek, (4.6)

we have from Eqs. (3.2), (3.8), (4.1) and (4.2) that

ξ(j)δ(h(j))=
∏
R+
(j)

(ξ(j)kl(h(j)))
1/2 =

n∏
k=1

(h
(n−2k+1)
(j)k )1/2

=
p−j∏
k=1

e(i/2)φ(j)k(n−2k+1)
p∏

k=p−j+1

e(1/2)z(j)p+1−k(n−2k+1)

×
p+j∏

k=p+1

e(−1/2)z̄(j)k−p(n−2k+1)
n∏

k=p+j+1

e(i/2)ψ(j)n+1−k(n−2k+1), (4.7)

where by the unimodularity conditionh(j)n = (h(j)1h(j)2 · · ·h(j)n−1)
−1, ξ(j)δ becomes

single-valued. Using this condition explicitly, one obtains

ξ(j)δ(h(j))=
n−1∏
k=1

hn−k(j)k =
p−j∏
k=1

eiφ(j)k(n−k)
p∏

k=p−j+1

ez(j)p+1−k(n−k)
p+j∏

k=p+1

e−z̄(j)k−p(n−k)

×
n−1∏

k=p+j+1

eiψ(j)n+1−k(n−k).

Now, following Harish-Chandra [7], one may define thedensity functions∆ for
SUp,q as
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∆(j)(h(j))= ξ(j)δ(h(j))
∏
R+
(j)

(1− ξ(j)kl(h
−1
(j))) =

∏
1≤k<l≤n

(h(j)k − h(j)l)

= (−1)(1/2)n(n−1)det




1 · · · 1

h(j)1 · · · h(j)n

h2
(j)1 · · · h2

(j)n

... · · · ...

hn−1
(j)1 · · · hn−1

(j)n




=
∑
σ∈Sn

sgn(σ )hσ(n)−1
(j)1 h

σ(n−1)−1
(j)2 · · ·hσ(1)−1

(j)n . (4.8)

The value∆(j)(hj ) is called theWeyl denominator[30,32].

Theorem 4.2. The density functions∆ have the following special values:

∆(j)R(h(j))=
∏
R+
(j)R

(1− ξ(j)kl(h
−1
(j))) =

p∏
k=p−j+1

(1− h−1
(j)kh(j)2p+1−k),

∆(j)SI(h(j))=
∏
R+
(j)SI

(1− ξ(j)kl(h
−1
(j))) =

p−j∏
k=1

n∏
l=p+j+1

(1− h−1
(j)kh(j)l),

∆(j)I(h(j))= ξ(j)δ(
th(j))

∏
R+
(j)I

(1− ξ(j)kl(h
−1
(j)))

=
p+j∏

k=p−j+1

(th(j)k)
n−k

p−j∏
k=1

h
2j
(j)k

∏
1≤k<l≤p−j

(h(j)k − h(j)l)

×
∏

1≤k≤p−j
p+j+1≤l≤n

(h(j)k − h(j)l)
∏

p+j+1≤k<l≤n
(h(j)k − h(j)l),

∆(j)R∪C(h(j))= ξ(j)δ(
vh(j))

∏
R+
(j)R∪R+(j)C

(1− ξ(j)kl(h
−1
(j)))

=
p+j∏

k=p−j+1

(vh(j)kh
−1
(j)k)

n−k
p−j∏
k=1

h
−2j
(j)k

∏
1≤k≤p−j

p−j+1≤l≤p+j

(h(j)k − h(j)l)

×
∏

p−j+1≤k≤p+j
p−j+2≤l≤n

(h(j)k − h(j)l), ∆(j) = ∆(j)I∆(j)R∪C,

where the indicest andv denote toroidal and vector parts, respectively; R+(j)I denotes the
set of all imaginary positive roots which, when restricted toH v

j , vanish identically; and

R+(j)R∪C denotes the set of all real and complex positive roots which do not vanish onH v
j .
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Proof. Follows by direct computations from Eqs. (4.2)–(4.5). �

Theorem 4.3. The density functions∆ satisfy the following conjugation properties:

1. ∆Hj
(h(j)) = (−1)|R

+
(j)
|+|R+

(j)R|∆Hj
(h(j)) = (−1)(1/2)n(n−1)+j∆Hj

(h(j)).

2. ∆(j)R(h(j)) = ∆(j)R(h(j)).
3. ∆(j)SI(h(j)) = ∆(j)SI(h

−1
(j)).

4. ∆(j)I(h(j)) = (−1)(1/2)n(n−1)+j
(∏p+j

k=p−j+1(
th(j)k)

−2(n−k)∏p−j
k=1h

−4j
(j)k/(h(j)1 · · ·

h(j)p−j h(j)p+j+1 · · ·h(j)n)n−2j−1
)
∆(j)I(h(j)).

5. ∆(j)R∪C(h(j)) =
(∏p+j

k=p−j+1(
th(j)k)

2(n−k)∏p−j
k=1h

4j
(j)k/(h(j)1 · · ·h(j)p−j h(j)p+j+1 · · ·

h(j)n)
2j (h(j)p−j+1 · · ·h(j)p+j )n−1

)
∆(j)R∪C(h(j)).

Proof. Follows by direct computations. �

Let H ′
(j), H

′
(j)R, H

′
(j)SI, H

′
(j)I , andH ′

(j)R∪C be the subsets ofHj defined by allh(j) ∈
Hj such that∆(j)(h(j)) �= 0, ∆(j)R(h(j)) �= 0, ∆(j)SI(h(j)) �= 0, ∆(j)I(h(j)) �= 0, and
∆(j)R∪C(h(j)) �= 0, respectively. LetSU′p,q(j) = {gh′(j)g

−1 : g ∈ SUp,q, h′(j) ∈ H ′
(j)},

then one hasSU′p,q = ∪pj=0SU′p,q(j). The elements ofSU′p,q are said to beregular elements
in SUp,q . ClearlyH ′

(j) = Hj ∩ SU′p,q . One may also define the regular elements ofSUp,q
as follows. Consider thecharacteristic polynomialsof Ad(g), whereg ∈ SUp,q, det((t +
1)I −Ad(g)) =∑

0≤k≤n2−1Dk(g)t
k, wheret is an indeterminate,(n2−1) = dim(SUp,q),

andDk are analytic functions onSUp,q with Dn2−1 = 1. An elementg ∈ SUp,q is said
to be regular ifDl(g) �= 0 for l = rankSUp,q = rank(sup,q) = (n − 1) andsingular
if Dl(g) = 0. For the case wheng = h′(j) ∈ H ′

(j) one can show by direct computation

Dn−1(h
′
(j)) = (−1)(1/2)n(n−1)∆2

(j)(h
′
(j)). Equivalently, an elementg ∈ SUp,q is regular if

the eigenvalues ofg are all distinct. Regular elements ofSUp,q also have the property that
all their principal minors are non-zero. The setSU′p,q of all regular elements ofSUp,q is
open and dense inSUp,q and its complement, the set of all singular elements ofSUp,q is of
measure zero with respect to the invariant Haar measure ofSUp,q [26].

Now, define the mappingsε(j)R onHj by

ε(j)R(h(j))= sgn(∆(j)R(h(j))) = sgn


 j∏
k=1

(1− e−2t(j)k )




= sgn


 j∏
k=1

(sinht(j)k)


 = sgn


 j∏
k=1

t(j)k


 , (4.9)

where

sgn(t) =




1, t > 0,

−1, t < 0,

0, t = 0.
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Now, wherew ∈ W(SUp,q,Hj ), andh′(j) ∈ H ′
(j), defineε′R(w) andεR(w) by

ε(j)R(wh′(j)) = ε′R(w)ε(j)R(h
′
(j)),

ε(j)R(wh′(j))∆(j)(wj′(j)) = εR(w)ε(j)R(h
′
(j))∆(j)(h

′
(j)). (4.10)

A functionfj onHj is said to beskew symmetric(symmetric) underSp−j and underSq−j ,
symmetric(symmetric) underSj , andfj is said to beeven(odd) underP(j) if fj satisfies

fj (wh(j)) = εR(w)fj (h(j)) (fj (wh(j)) = ε′R(w)fj (h(j))). (4.11)

Let us now define [7]SU′′p,q = ∪pj=0{gh′′(j)g
−1 : g ∈ SUp,q, h′′(j) ∈ H ′′

(j)}, where

H ′′
(j) =


h(j) ∈ Hj :

∏
R+
(j)R∪R+(j)C∪R+(j)SI

(1− ξ(j)kl(h
−1
(j))) �= 0


 ,

as the set ofquasi-regularelements inSUp,q . Then the setSU′′p,q is an open dense subset
of SUp,q and it is clear that one hasSU′p,q ⊂ SU′′p,q .

5. Invariant differential operators

The groupSUp,q , as a Lie group, can be seen as an analytic manifold of real dimension
(n2 − 1), n = p + q. Let C∞(SUp,q) denote the space of all infinitely differentiable,
complex-valued functions onSUp,q . The spaceC∞(SUp,q) is a Fréchet space, and forms
an algebra overC with pointwise linear operations. For each compact subsetK ⊂ SUp,q ,
let C∞K (SUp,q) denote a subspace ofC∞(SUp,q) equipped with the topology induced by
C∞(SUp,q). C∞K (SUp,q) is a closed subspace ofC∞(SUp,q), hence a Fréchet space. Let
C∞c (SUp,q) denote the subalgebra ofC∞(SUp,q) consisting of all functions onSUp,q
with compact support. The spaceC∞c (SUp,q) is given theinductive limit topologyof the
spacesC∞K (SUp,q). With this topology onC∞c (SUp,q), the continuous linear functionals
onC∞c (SUp,q) are indeed the distributions onSUp,q . According to a criterion by Peetre
[9,17], a linear transformationD : C∞c (SUp,q)→ C∞c (SUp,q) is said to be a differential
operator onSUp,q if it satisfies the condition supp(Df) ⊂ supp(f )∀f ∈ C∞c (SUp,q).
The differential operatorD on the analytic manifoldSUp,q is said to be analytic ifDf is
analytic at a pointx ∈ SUp,q wheneverf is analytic atx. Let E(SUp,q) denote the set of
all differential operators onSUp,q . E(SUp,q) forms a subalgebra of End(C∞c (SUp,q)), the
algebra of endomorphisms ofC∞c (SUp,q). Let D(SUp,q) denote the set of all left-invariant
differential operators onSUp,q . D(SUp,q) forms a subalgebra ofE(SUp,q). The set of all
bi-invariantdifferential operators onSUp,q is the set of all elements ofD(SUp,q)which are
also right-invariant.

A basis ofD(SUp,q) can be obtained by introducing one-parameter subgroups ofSUp,q .
Let X̃ denote the unique left-invariant vector field onSUp,q induced byX ∈ sup,q such that,
for f ∈ C∞c (SUp,q), (X̃f )(g) = (d/dt)f (x etX)|t=0, x ∈ SUp,q . X̃ defines a left-invariant

differential operator onSUp,q which takes the formX̃ = ∑n2−1
k=1 ak(∂/∂xk), whereak ∈
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C∞(SUp,q) and(x1, . . . , xn2−1) are coordinates ofx ∈ SUp,q . Where{X1, . . . , Xn2−1} is

a basis forsup,q , the set of monomials{X̃k1
1 · · · X̃

k
n2−1

n2−1
: ki ∈ N ∪ {0}}, forms a basis for

D(SUp,q).

6. Universal enveloping algebra of SUp,q

Recalling thatsln(C) is the complexification ofsup,q , letU(sln(C)) denote theuniversal
enveloping algebraof sup,q . This algebra is defined as the factor algebra(sln(C))

⊗/Ju,
where(sln(C))⊗ is the tensor algebra oversln(C) (considered as a vector space), given by

(sln(C))
⊗ = C⊕

⊕∑
k≥1

sln(C)⊗ · · · ⊗ sln(C)︸ ︷︷ ︸
k times

:= (sln(C))
⊗
0 ⊕ (sln(C))

⊗
+,

andJu is the two-sided ideal in(sln(C))⊗ generated by all tensor elements of the form
X ⊗ Y − Y ⊗X − [X, Y ], whereX, Y ∈ sln(C).

Let, in the following diagram,σ1 be the canonical injection andσ2 be the natural homo-
morphism

sln(C)
σ1→sln(C))⊗ σ2→U(sln(C)).

The composite mappingσ = σ2 ◦σ1 is a Lie homomorphism ofsln(C) intoU(sln(C)), i.e.,
for all X, Y ∈ sln(C) one hasσ([X, Y ]) = σ(X)σ(Y )− σ(Y )σ (X), whereσ(X)σ(Y ) =
(X ⊗ Y )+ Ju = σ2(X ⊗ Y ). The algebraU(sln(C)) overC is an associative algebra with
respect to the usual coset multiplication. One can show that the canonical mappingσ is
injective and hence one may identify every element ofsln(C) (and consequently every
element ofsup,q ) with its canonical image inU(sln(C)).

Let {X1, . . . , Xn2−1} be a basis ofsln(C). The elements of this basis satisfy [Xi,Xj ] =∑n2−1
k=1 ckijXk, whereckij ∈ R are thestructure constants. In terms of this basis, a basis of

(sln(C))
⊗ is given by

{1, Xi1 ⊗ · · · ⊗Xik : 1≤ i1, . . . , ik ≤ n2− 1, k ∈ N}.
ThePoincaré–Birkhoff–Witt basisof U(sln(C)) is given by

{(σ (X1))
k1 · · · (σ (Xn2−1))

k
n2−1 : ki ∈ N ∪ {0}}, (6.1)

whereσ(Xi) = Xi+Ju and satisfies [σ(Xi), σ (Xj )] =
∑n2−1

k=1 ckijσ(Xk). Clearly, with this
basis forU(sln(C)) and the basis forD(SUp,q) (see Section 5), the isomorphism

U(sln(C)) ∼= D(SUp,q) (6.2)

can be immediately seen.
Now, consider a pointx in SUp,q , and letX ∈ U(sln(C)). One can show that ifXf (x) =

0 for all f ∈ C∞c (SUp,q), thenX = 0. Furthermore, it is known that ifD is a differen-
tial operator onSUp,q , then there exists exactly one elementXx ∈ U(sln(C)) such that



28 R. Wilson, E. Tanner / Journal of Geometry and Physics 41 (2002) 13–56

(Df)(x) = (Xxf )(x)∀f ∈ C∞c (SUp,q). Such an elementXx is called thelocal expression
ofD atx [7].

Let Z denote the center ofU(sln(C)). By the isomorphism (6.2), one has

Z ∼= Z(D(SUp,q)), (6.3)

where

Z = {X ∈ U(sln(C)) : [X,X] = 0∀X ∈ sup,q}. (6.4)

7. The Harish-Chandra homomorphisms

Let hc
j , j = 0, . . . , p denote the complexification of the Cartan subalgebrahj of sup,q .

LetU(hc
j ) denote the universal enveloping algebra generated by 1 andhc

j . ClearlyU(hc
j ) is

a subalgebra ofU(sln(C)). Because eachhc
j is a conjugate form of the Cartan subalgebrahd

of sln(C), the(p+1) enveloping algebrasU(hc
j ) are also conjugate toU(hd). Consequently,

one considers onlyU(hd). A basis ofU(hd) is given by

{(σ (X1))
k1 · · · (σ (Xn))

kn : ki ∈ N ∪ {0}}, (7.1)

where{X1, . . . , Xn;X1+· · ·+Xn = 0} is a basis ofhd. The Poincaré–Birkhoff–Witt basis
for U(sln(C)) can be given by the set of monomials, forqk, rk, pk ∈ N ∪ {0},

∏
αk∈R+

(σ (E−αk ))
qk

n∏
k=1

(σ (X(j)k))
rk

∏
αk∈R+

(σ (Eαk ))
pk , (7.2)

which follows from the triangular decompositionsln(C). Sincehd is abelian,U(hd) coin-
cides with the symmetric algebraS(hd) = (hd)

⊗/Js, whereJs is a two-sided ideal with
elements of the form,X ⊗ Y − Y ⊗X ∀X, Y ∈ hd.

Let σ : sln(C) → U(sln(C)) be the Lie homomorphism, and letσs : sln(C) →
S(sln(C))be the canonical mapping. Then, on viewing these algebras as vector spaces, there
exists a unique linear isomorphism, calledsymmetrization, defined byλ : S(sln(C)) →
U(sln(C)), such thatσ = λ◦σs. It can be shown [15,17] that the image of the Ad(SLn(C))-
invariant subset ofS(sln(C)) under the symmetrization mappingλ is equal to the centerZ.
In terms of the basis (7.2), one has the decomposition

U(sln(C)) = U(hd)⊕ [σ(n−)U(sln(C))+ U(sln(C))σ (n+)], (7.3)

which gives raise to the following two conditions:

U(hd) ∩
∑
α∈R+

U(sln(C))σ (Eα) = {0}, (7.4a)

Z ⊆ U(hd)⊕
∑
α∈R+

U(sln(C))σ (Eα). (7.4b)



R. Wilson, E. Tanner / Journal of Geometry and Physics 41 (2002) 13–56 29

Let γ ′ be the projection ofU(hd) ⊕
∑

α∈R+U(sln(C))σ (Eα) onto theU(hd) component.
Clearly, one can see that

γ ′

 ∑
α∈R+

U(sln(C))σ (Eα)


 = {0}. (7.5)

The mappingγ ′ is an algebra homomorphism ofZ intoU(hd) [5]. Following Harish-Chandra
[7], we defineη ∈ Aut(U(hd)) such thatη(1) = 1 and forX1, X2 ∈ hd,

η(σ1(X1)⊗ σ1(X2)+ Js) = (σ1(X1)⊗ σ1(X2)+ δ(X1)σ1(X2)

+δ(X2)σ1(X1)+ δ(X1)δ(X2))+ Js, and

η(1+ Js) = (1+ Js).

This reduces, whenX1 = X, X2 = 0, toη(σ1(X)+ Js) = (σ1(X)− δ(X))+ Js, whereδ
is given by (4.6) (δ(X) ∈ C). One can see from the definition ofγ ′ and the definition ofη,
thatη is multiplicative on the centerZ. Now define the mappingγ = η ◦ γ ′ : Z→ U(hd).

Lemma 7.1. γj ∈ Hom(Z,U(hc
j ))∀j = 0,1, . . . , p.

Proof. For z1, z2 ∈ Z, the element

z1z2− γ ′(z1)γ ′(z2) = z1(z2− γ ′(z2))+ γ ′(z2)(z1− γ ′(z1))

is in
∑

α∈R+U(sln(C))σ (Eα). Hence from (7.5), one hasγ ′(z1z2)−γ ′(z1)γ ′(z2) = 0. That
is, γ ′(z1z2) = γ ′(z1)γ ′(z2), and thusγ ′ is multiplicative onZ. Sinceη is multiplicative
one finds thatγ also multiplicative. As the composition of two algebraic homomorphisms
the mappingγ is also an algebraic homomorphism, and is called theHarish-Chandra
homomorphism. �

An elementX ∈ U(hd) is invariant under the Weyl groupW(sln(C), hd) if X = wXw−1

for all w ∈ W(sln(C), hd). The set of all Weyl invariant elements form a subalgebraI(hd)

of U(hd). One can prove [18] that Im(γ ) ⊆ I(hd) and that the mappingγ : Z→ I(hd) is
bijective. Thus one has(p + 1) number of isomorphismsγj : Z→ I(hc

j ).
Now, let τ ∈ Aut(sln(C)) be defined such thatτ(1) = 1 andτ(hc

j ) = hc
j . That is,

hc
j is τ -invariant. Sinceη ∈ Aut(U(hd)) and since, as pointed out in Section 3, the root

system of(sln(C), hd) parallels that of(sln(C), hc
j ), one finds that the compositionτ ◦ η

is commutative. From the definitions ofγ ′j andγj and by using theτ -invariance ofhc
j and

the isomorphismZ → I(hc
j ) it can be shown that, forz ∈ Z, γ ′j (τ zτ−1) = τγ ′j (z)τ

−1,

implying thatγj (τ zτ−1) = τγj (z)τ
−1.

Because the rank ofSUp,q is equal to(n− 1), the centerZ is generated by(n− 1) basis
elements. These basis elements can be chosen to be polynomials in the basis elements of
sup,q . These(n−1)elements are called theCasimir elements, denoted byCκ , κ = 2, . . . , n.
Writing the set of basis elements ofsup,q as{Xik : 1 ≤ i, k ≤ n, X11+ · · · + Xnn = 0},
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the Casimir elements may be defined as

Cκ =
n∑

i1,...,iκ=1

(
κ−1∏
k=1

σ(Xikik+1)

)
σ(Xiκ i1), (7.6)

satisfying [Cκ ,Xik] = 0, i, k = 1, . . . , n. To determine the action of the projectionγ ′ on
Cκ , one expands eachCκ and uses the commutation relations to move all theXik, i < k,
toward the right. That is, writingCκ in the formU(hd)⊕

∑
α∈R+

(j)
U(sln(C))σ (Eα). Then,

by (7.5), the resulting expressions become polynomials in onlyXkk := Xk, k = 1, . . . , n,
which are the elements ofU(hd). That is,

γ ′(Cκ) =
n∑
i=1

(σ (Xi))
κ +

κ−1∑
k=1

n∑
l=1

akl(σ (Xl))
k,

whereakl ∈ Q can be uniquely determined by the commutation relations onXik.
In order to determine the action of the Harish-Chandra isomorphismγ = η◦γ ′, one also

needs to know the action ofη, which requires the action ofδ. δ is one-half of the sum of all
positive roots of(sln(C), hd) and is given by (4.6). That is,δ(Xk) = 1

2(n − 2k + 1). The
action of the automorphismη onσ(Xk) is now given byη(σ (Xk)) = σ(Xk)− 1

2(n−2k+1).
Hence the action of the Harish-Chandra isomorphismγ onCκ is given by

γ (Cκ) =
n∑

k=1

[
σ(Xk)− 1

2
(n− 2k + 1)

]κ
+

κ−1∑
k=1

n∑
l=1

akl

[
σ(Xl)− 1

2
(n− 2l + 1)

]k
.

(7.7)

Let, as in Section 4,H ′
(j) = Hj ∩ SU′p,q denote the set of regular elements inHj . H ′

(j)

may be seen as an open submanifold ofSUp,q . A measure on a manifold [26] is said to
be equivalent to Lebesgue measureif on each coordinate neighborhood, it is a multiple
of Lebesgue measure by a nowhere vanishingC∞ function. Then, one has the following
special cases of the theorems from [9,15].

Theorem 7.2 (Harish-Chandra [5–14]).Whereπ is a projection of SUp,q ontoH ′
(j) and

wheredµ(g) and dµ(h(j)) are equivalent to Lebesgue measures on SUp,q andH ′
(j), re-

spectively, then there exists a unique functionfα ∈ C∞c (H ′
(j)) for eachα ∈ C∞c (SUp,q)

such that∫
SUp,q

(F ◦ π)(g)α(g)dµ(g) =
∫
H ′
(j)

F (h(j))fα(h(j))dµ(h(j)) ∀F ∈ C∞c (H ′
(j)).

Furthermore, α �→ fα is a continuous mapping ofC∞c (SUp,q) onto C∞c (H ′
(j)), and

supp(fα) ⊆ π(supp(α)).

Theorem 7.3 (Helgason [15–18]).If D is a differential operator on SUp,q , then there
exists a unique differential operator∆(D) onH ′

(j), called the radial part of D, such that
(Df)|H ′

(j)
= ∆(D)f |H ′

(j)
for each locally invariantC∞ function f on SUp,q .
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From the above two theorems, one obtains the following expression for the radial part of
the differential operatorz ∈ Z in terms ofγ (z) ∈ I(hd):

(zf )|H ′
(j)
(h(j))=((∆(j)(h(j)))

−1γ (z) ◦∆(j)(h(j)))f |H ′
(j)
(h(j)), h(j) ∈ H ′

(j), (7.8)

where◦ denotes composition of differential operators, and∆j(h(j)) is the density function
given in (4.8). The composite operator

(∆(j)(h(j)))
−1γ (z) ◦∆(j)(h(j)) (7.9)

is well defined and is the radial part ofz onH ′
(j).

One can express every differential operatorγ (z) ∈ I(hd) in terms of differential operators
h(j)k(∂/∂h(j)k) (see (3.8)). These differential operators are given by

h(j)k
∂

∂h(j)k
=




1

ι

∂

∂φ(j)k
, k = 1, . . . , p − j,

∂

∂z(j)p−k+1
= 1

2

(
∂

∂t(j)p−k+1
+ 1

ι

∂

∂θ(j)p−k+1

)
, k = p − j + 1, . . . , p,

− ∂

∂z̄(j)k−p
= 1

2

(
− ∂

∂t(j)k−p
+ 1

ι

∂

∂θ(j)k−p

)
, k = p + 1, . . . , p + j,

1

ι

∂

∂ψ(j)n−k+1
, k = p + j + 1, . . . , p + q = n.

(7.10)

The set of these operators forms a basis forI(hd). As we see in Section 8, for a given
representation ofSUp,q , the eigenvalues of these basis elements are given by the parameters
u(j) = (u(j)1, . . . , u(j)n). Then-tupleu(j) is thehighest weightof the representation of
SUp,q induced byHj .

8. Character groups and representation parameters

Thecharacter groupof the dense subsetH ′
(j), 0 ≤ j ≤ p of the Cartan subgroupHj is

given by the set of mappingsξ(j)αuj ∈ Hom(H ′
(j),C). We denote this group byH ′∗

(j). From

(3.5) and (3.8), one obtains forh(j) ∈ H ′
(j),

ξ(j)αuj
(h(j)) = ξ(j)αuj

(diag[h(j)1, . . . , h(j)n]) =
n∏

k=1

(h(j)k)
u(j)k

= ξ(j)αuj
(diag[eιφ1, . . . ,eιφp−j ;ezj , . . . ,ez1;e−z̄1, . . . ,e−z̄j ;eιψq−j , . . . ,eιψ1])

=

p−j∏
k=1

(eιφk )u(j)k




 p∏
k=p−j+1

(ezp−k+1)u(j)k
p+j∏

k=p+1

(z−z̄k−p )u(j)k




×

 n∏
k=p+j+1

(eιψn−k+1)u(j)k


 ,
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whereu(j)k ∈ Z for 1 ≤ k ≤ p − j andp + j + 1 ≤ k ≤ n, andu(j)k ∈ C for
p − j + 1 ≤ k ≤ p + j . The n-tuple (u(j)1, . . . , u(j)n) is called thesignatureof the
characterξ(j)αuj . Clearly one has that(

h(j)k
∂

∂h(j)k
ξ(j)αuj

)
(h(j)) = u(j)kξ(j)αuj

(h(j)). (8.1)

A characterξ(j)αuj ∈ H ′∗
(j) is regularsince, for every non-unit elementw ∈ W(SUp,q,Hj ),

w(αu) �= αu.
By using the unimodularity condition given byh(j)n = (h(j)1h(j)2 · · ·h(j)n−1)

−1, i.e.,

ψ1 = −
p−j∑
k=1

φk − 2
j∑

k=1

θk −
q−j∑
k=2

ψk,

one obtains, foru′(j)k = u(j)k − u(j)n,

ξ(j)αuj
(h(j))=


p−j∏
k=1

(eιφk )u
′
(j)k




 p∏
k=p−j+1

(ezp−k+1)
u′
(j)k

p+j∏
k=p+1

(e−z̄k−p )u
′
(j)k




×

 n−1∏
k=p+j+1

(eιψn−k+1)
u′
(j)k


 .

In fact, there are(
n

1

)

ways in which one can introduce the unimodularity condition.
It is known that the representations ofSUp,q induced by the Cartan subgroupsHj are

parameterized by the signatures of the characters in the respective character groupsH ′∗
(j).

Choosing any of the(
n

1

)

ways to introduce the unimodularity condition will result in equivalent representations. For
unitary representations ofSUp,q , one may choose the parameterization

u′(j)k = u(j)k − u(j)n

=




m(j)k, 1≤ k ≤ p − j,

σ(j)k := 1
2(λ(j)k + ιr(j)k), p − j + 1≤ k ≤ p,

σ(j)k := 1
2(λ(j)2p−k+1− ιr(j)2p−k+1), p + 1≤ k ≤ p + j,

m(j)k, p + j + 1≤ k ≤ n− 1.

(8.2)
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Consequently, one has

ξ(j)αuj
(h(j))=


p−j∏
k=1

(eιφk )m(j)k




 p∏
k=p−j+1

(
ezp−k+1

|ezp−k+1|
)λ(j)k

|ezp−k+1|ιr(j)k



×

 n−1∏
k=p+j+1

(eιψn−k+1)m(j)k


 , (8.3)

wherem(j)k ∈ Z, λ(j)k, r(j)k ∈ R, and ez(1/2)(m+ιr) e−z̄(1/2)(m−ιr) = (ez/|ez|)m|ez|ιr . For
irreducible unitary representations ofSUp,q , one has the Weyl condition [30]:m(j)1 ≥
m(j)2 ≥ · · · ≥ m(j)p−j ≥ mp+j+1 ≥ mp+j+2 ≥ · · · ≥ m(j)n−1.

Harish-Chandra [11,12] proved that a semisimple Lie group has a discrete series of
representations if and only if its rank is equal to the rank of its maximal compact subgroup
or, equivalently, if and only if it has a compact Cartan subgroup. The groupSUp,q has
one compact Cartan subgroupH0 ⊂ K = S(U(p) ⊗ U(q)). Also, the rank ofSUp,q =
(n− 1) = rank(K), henceSUp,q has a discrete series of representations.

LetR+(0)c be a fixed system of compact positive roots given by (4.3). There exist exactly(
n

p

)
systems of positive roots, denoted by

R+k , 1≤ k ≤
(
n

p

)
,

containingR+(0)c. These systems are given byR+k = wkR
+
(0), whereR+(0) is given by (4.2)

and the Weyl reflectionswk ∈ W(sln(C)) are products of transpositionssi = (i, i+1), i =
1, . . . , p. This means that there are(

n

p

)
non-equivalent discrete representations forSUp,q . For each of the(

n

p

)

systems of positive rootsR+k containingR+(0)c, one can compute

δk = 1

2

∑
α∈R+k

α, k = 1,2, . . . ,

(
n

p

)
.

Since each Weyl reflectionsi changes a non-compact negative root into a non-compact
positive root, one may easily computeδk for eachk. For example, whenw1 = I and
w2 = sp one obtains, whereq − p = n− 2p,



34 R. Wilson, E. Tanner / Journal of Geometry and Physics 41 (2002) 13–56

δ1 = 1
2(n− 1, n− 3, . . . , q − p + 1, q − p − 1, q − p − 3, . . . ,−n+ 3,−n+ 1),

δ2 = 1
2(n− 1, n− 3, . . . , q − p − 1, q − p + 1, q − p − 3, . . . ,−n+ 3,−n+ 1).

The onlyholomorphicdiscrete series representations ofSUp,q, p < q, is obtained from
δ1. However, whenp = q, there exists a system of positive roots,R+a , in which all p2

non-compact negative roots enter as positive roots. In this case, one obtains

δ1 = 1
2(n− 1, n− 3, . . . ,3,1,−1,−3, . . . ,−n+ 3,−n+ 1),

δa = 1
2(−1,−3, . . . ,−n+ 3,−n+ 1, n− 1, n− 3, . . . ,3,1).

Here, the only holomorphic series representations is obtained fromδ1, and the onlyanti-
holomorphicseries representations is obtained fromδa .

One can introduce, for discrete series of representations, a different set of parame-
ters, calledHarish-Chandra parametersI = (I1, . . . , In), or Blattner parametersJ =
(J1, . . . , Jn). These parameters are related byJ = I− 2δc+ δk, whereδc = 1

2

∑
α∈R+

(0)c
α =

1
2(p−1, p−3, . . . ,−p+1, q−1, q−3, . . . ,−q+1). However, in the discussion which
follows the parameters{u(j)k}nk=1, as given in (8.2), are used since it is possible to use them
generally for both discrete and continuous series of representations ofSUp,q .

9. Gårding space and representations of the Lie algebra sup,q

Let(ρj ,Hj )denote the representation ofSUp,q induced by the Cartan subgroupsHj , j =
0,1, . . . , p. That is,ρj ∈ Hom(SUp,q,Aut(Hj )). Gårding [3] showed that every group
representation(ρ,H) defines a representation of its corresponding Lie algebra on a dense
subspace ofH. LetGj be a vector subspace ofHj spanned by all vectors of the form∫

SUp,q
f (g)(ρj (g))(ψ)dµ(g) := ◦

ψf , (9.1)

where dµ(g) is the left-invariant Haar measure [26] onSUp,q, ψ ∈ Hj andf ∈ C∞c (SUp,q).
The spaceGj is called theGårding subspaceof Hj (or Gårding domain) with respect to
the group representationρj . For everyX ∈ sup,q one defines a linear operatorKj (X) of Gj
into itself such that

Kj (X)
◦
ψf = d

dt
(ρj (e

tX)
◦
ψf )

∣∣∣∣
t=0

= lim
t→0

(
ρj (etX)− I

t

)
◦
ψf , t ∈ R. (9.2)

One calls the pair(Kj ,Gj ), thederivedor differentiatedrepresentation of the groupSUp,q .
If g0 ∈ SUp,q , then

ρj (g0)
◦
ψf = ρj (g0)

∫
SUp,q

f (g)ρj (g)(ψ)dµ(g) =
∫

SUp,q
f (g)ρj (g0g)(ψ)dµ(g)

=
∫

SUp,q
f (g−1

0 z)ρj (z)(ψ)dµ(z)=
∫

SUp,q
f τg0 (z)ρj (z)(ψ)dµ(z)= ◦

ψf
τg0 ,

(9.3)

whereτg0 is the left translation. One can easily prove [3] the following theorem.
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Theorem 9.1. Let (ρj ,Hj ) be a representation of SUp,q . Then

1. The Gårding spaceGj is dense inHj .
2. The Gårding spaceGj is stable underKj (X),where X is the generator of a one-parameter

subgroup of SUp,q .

3. The pair(Kj ,Gj ) with Kj (X)
◦
ψf =

◦
ψ
X̃(f )

∀X ∈ sup,q is a representation ofsup,q .

4. The operatorsιKj (X), ι =
√−1, X ∈ sup,q are symmetric.

Remark.

1. SinceGj is an invariant subspace, one can define the action of any elementX ∈ U(sln(C))
by Kj (X)

◦
ψf =

◦
ψ
X̃(f )

, whereX̃ is the left differential operator onC∞c (SUp,q) corre-
sponding to the elementX. Hence, the representation(Kj ,Gj ) can be uniquely extended
to a representation ofU(sln(C)).

2. One may use, instead of the Gårding domainGj , the space ofwell-behaved vectors,
(analytic vectors) [23], dense inHj , which was introduced by Harish-Chandra. An
elementψ ∈ Hj is said to be well-behaved underρj if the mappingg �→ ρj (g)ψ

is an analytic mapping ofSUp,q ontoHj . The use of this space resolves the lack of
SUp,q -invariance of the Gårding domain under the unique extension of the representation
(Kj ,Gj ) to a representation ofU(sln(C)). Denoting the analytic vector space byAj , this
unique extension to a representation ofU(sln(C)) will be denoted by(Kj ,Aj ).

10. Invariant eigendistributions on SUp,q

Let, as before,Z(SUp,q) denote the center ofSUp,q andZ denote the center of the
universal enveloping algebraU(sln(C)). The representation(ρj ,Hj ) is aquasi-simplerep-
resentation ofSUp,q if there existη ∈ Hom(Z(SUp,q),C−{0}), called thecentral character
of (ρj ,Hj ), andχ ∈ Hom(Z,C), called theinfinitesimal characterof (ρj ,Hj ), such that
the following two conditions hold:

ρj (z)ψ = ηωj (z)ψ, z ∈ Z(SUp,q), ψ ∈ Hj ,

Kj (z)
◦
ψf = χωj (z)

◦
ψf , z ∈ Z, ◦

ψf ∈ Gj , (10.1)

whereωj is the equivalence class containing the representation(ρj ,Hj ) of SUp,q . For
ψ ∈ Hj , one hasKj (z)ψ = χωj (z)ψ . It is well known [24] that any irreducible unitary
representation is quasi-simple.

A linear operatorA on the Hilbert spaceH is said to be of trace class if for every
bounded linear operatorB with a bounded linear inverse,

∑ |(ψi, B−1ABψi)| < ∞ for
every orthonormal basis{ψ1, . . . , ψn, . . . }. The sum

∑
(ψi, B

−1ABψi) is independent of
both{ψi} andB, and is called the trace ofA. A is said to be of theHilbert–Schmidt class
if AA∗ has a trace,A∗ being theformal adjointof A.

Let (ρj ,Hj ) be an irreducible unitary representation ofSUp,q on a Hilbert spaceHj .
Then for anyf ∈ C∞c (SUp,q) satisfying

∫
SUp,q

|f (g)|2 dµ(g) < ∞, where dµ(g) is the
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Haar measure onSUp,q the bounded linear operatorρj(f ) =
∫

SUp,q
f (g)ρj (g)dµ(g) on

Hj has a trace and is of the Hilbert–Schmidt class [6]. LetD be the space of all operators
of the formρj(f ). Then, forg0 ∈ SUp,q ,

ρj (g0)ρj (f ) =
∫

SUp,q
f (g)ρj (g0g)dµ(g) =

∫
SUp,q

f (g−1
0 g)ρj (g)dµ(g),

andρj(f )ρj (g
−1
0 ) = ∫

SUp,q
f (gg0)ρj (g)dµ(g). That is,ρj (g0)ρj (f ) andρj(f )ρj (g

−1
0 ) are

inD for eachg0 ∈ SUp,q . Define the linear functionalTωj onC∞c (SUp,q), called theglobal
character(or distributional character) of (ρj ,Hj ), by

Tωj (f ) = tr(ρj (f )) =
∑
i≥1

∫
SUp,q

f (g)(ρj (g)(ψi), ψi)dµ(g), ρj ∈ ωj , (10.2)

where{ψi}i≥1 is an orthonormal basis ofHj . One can see that this global characterTωj
does not vary within an equivalence class of representations ofSUp,q . Where(ρj ,Hj ) and
(ρ′j ,H

′
j ), are two equivalent representations ofSUp,q , there exists an isometryA fromHj

ontoH′j such thatρj (g) = A−1ρ′j (g)A∀g ∈ SUp,q . Thus

ρj(f ) =
∫

SUp,q
f (g)ρj (g)dµ(g) =

∫
SUp,q

f (g)A−1ρ′j (g)Adµ(g) = A−1ρ′j (f )A.

Taking the trace on both sides, one hasTρj (f ) = Tρ′j (f ), ρj , ρ
′
j ∈ ωj . One finds [10] that

Tωj is a distribution in the sense of Laurent Schwartz.

Lemma 10.1. Tωj is conjugation-invariant (central) under SUp,q .

Proof. Let f, f ′ ∈ C∞c (SUp,q) such that, given ag0 ∈ SUp,q, f ′(g) = f (g0gg−1
0 )∀g ∈

SUp,q . Then

ρj(f ′) =
∫

SUp,q
f ′(g)ρj (g)dµ(g) =

∫
SUp,q

f (g0gg−1
0 )ρj (g)dµ(g)

=
∫

SUp,q
f (g)ρj (g

−1
0 gg0)dµ(g) = ρj (g

−1
0 )ρj (f )ρj (g0).

Taking the trace on both sides, one hasTωj (f
′) = Tωj (f ). �

Now, by definition, theformal transposeP t(g, (∂/∂g)) of a differential operator
P(g, (∂/∂g)) on SUp,q satisfies(P (g, (∂/∂g))ψ, φ) = (ψ, P t(g, (∂/∂g))φ), whereψ ∈
C∞(SUp,q) andφ ∈ C∞c (SUp,q) (orψ ∈ C∞c (SUp,q) andφ ∈ C∞(SUp,q)). That is,∫

SUp,q

(
P

(
g,

∂

∂g

)
ψ

)
(g)φ(g)dµ(g) =

∫
SUp,q

ψ(g)

(
P t

(
g,

∂

∂g

)
φ

)
(g)dµ(g).

For example, the transpose of∂/∂g is−∂/∂g. If Tωj is a distribution of the formψ(g)dµ(g)
(Radon measure) then one has thatP(g, (∂/∂g))Tωj would be(P (g, (∂/∂g))ψ)(g)dµ(g).
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Thus motivated by the invariance property of differential operators (see Section 5) one
definesP(g, (∂/∂g))Tωj to be the distribution given by(

P

(
g,

∂

∂g

)
Tωj

)
(φ) = Tωj

(
P t

(
g,

∂

∂g

)
φ

)
, φ ∈ C∞c (SUp,q). (10.3)

Lemma 10.2. LetX̃ be a left-invariant vector field on SUp,q .Then, as a differential operator
X̃t = −X̃.

Proof. Letψ ∈ C∞(SUp,q)andφ ∈ C∞c (SUp,q) (orψ ∈ C∞c (SUp,q)andφ ∈ C∞(SUp,q)).
Then∫

SUp,q
(X̃ψ)(g)φ(g)dµ(g)=

∫
SUp,q

d

dt
[ψ(g etX)]t=0φ(g)dµ(g)

= d

dt

[∫
SUp,q

ψ(g etX)φ(g)dµ(g)

]
t=0

= d

dt

[∫
SUp,q

ψ(g)φ(g e−tX)dµ(g)

]
t=0

=
∫

SUp,q
ψ(g)(−X̃φ)(g)dµ(g).

Hence from the definition, it follows that̃Xt = −X̃. �

Lemma 10.3. Let (ρj ,Hj ) be an irreducible unitary representation of SUp,q . Then every
matrix coefficient ofρj of the formg �→ (ρj (g)ψ1, ψ2) transforms under a left-invariant
vector fieldX̃, X ∈ U(sln(C)) as

X̃(ρj (g)ψ1, ψ2) = (ρj (g)Kj (X)ψ1, ψ2), g ∈ SUp,q, ψ1, ψ2 ∈ Hj .

Proof. Let X̃ be a left-invariant vector field induced byX ∈ sup,q . Then by the definition
of X̃ one has

X̃(ρj (g)ψ1, ψ2)= d

dt
[(ρj (g etX)ψ1, ψ2)]t=0 = d

dt
[(ρj (g)ρj (e

tX)ψ1, ψ2)]t=0

= d

dt
[(ρj (e

tX)ψ1, ρ
∗
j (g)ψ2)]t=0 = (Kj (X)ψ1, ρ

∗
j (g)ψ2)

= (ρj (g)Kj (X)ψ1, ψ2).

If one iterates this equality then one has, for anyX ∈ U(sln(C)), X̃(ρj (g)ψ1, ψ2) =
(ρj (g)Kj (X)ψ1, ψ2). �

Proposition 10.4. LetTωj be the global character of an irreducible unitary representation
(ρj ,Hj ) of SUp,q . Let z ∈ Z, the center ofU(sln(C)). If z is considered as a left-invariant
differential operator, thenzTωj = χωj (z)Tωj , implying thatTωj is an invariant eigendistri-
bution forZ on SUp,q .
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Proof. From (10.3), we have(zTωj )(f ) = Tωj (z
t f ), f ∈ C∞c (SUp,q). Let {ψi}i≥1 be an

orthonormal basis ofHj . Then one has

(ρj (zt f )ψi, ψk)

=
(∫

SUp,q
(zt f )(g)ρj (g)dµ(g)ψi, ψk

)
=
∫

SUp,q
((zt f )(g)ρj (g)ψi, ψk)dµ(g)

=
∫

SUp,q
(ρj (g)ψi, ψk)(z

t f )(g)dµ(g) =
∫

SUp,q
z(ρj (g)ψi, ψk)f (g)dµ(g)

=
∫

SUp,q
(ρj (g)Kj (z)ψi, ψk)f (g)dµ(g) =

∫
SUp,q

(ρj (g)χωj (z)ψi, ψk)f (g)dµ(g)

= χωj (z)

∫
SUp,q

f (g)(ρj (g)ψi, ψk)dµ(g) = χωj (z)(ρj (f )ψi, ψk).

Taking the trace on both sides, one hasTωj (z
t f ) = χωj (z)Tωj (f ) = (zTωj )(f ). �

Any distribution which satisfies the above proposition is said to be aneigendistribu-
tion of Z on SUp,q . Also, a distributionT on SUp,q is said to beZ-finite if the space
spanned by(zTωj ) is finite-dimensional. By the above proposition, one has thatTωj is an
eigendistribution ofZ. BecauseTωj is conjugate-invariant underSUp,q, Tωj is an invari-
ant eigendistributionof Z on SUp,q . Also, since the centerZ is finite-dimensional,Tωj is
Z-finite.

A complex-valued function on an open subsetU of SUp,q , is locally summable(locally
integrable) if it is summable on every compact subset ofU with respect to the Haar measure
of SUp,q . According to Harish-Chandra’sregularity theorem[10], an invariant eigendistri-
bution is represented by a locallyL1 function on a connected reductive group. In terms of
SUp,q this theorem may be stated as follows.

Theorem 10.5 (Harish-Chandra [5–14]).There exists a locally summable functionFωj on
SUp,q which is analytic on SU′p,q such that the invariant eigendistributionTωj is given
by Tωj (f ) =

∫
SUp,q

f (g)Fωj (g)dµ(g)∀f ∈ C∞c (SUp,q). The functionFωj is uniquely

determined on SU′p,q by these properties.

By definition, the global characterTωj is given by, for allf ∈ C∞c (SUp,q) and for an
orthonormal basis{ψi}i≥1 ofHj ,

Tωj (f ) = tr(ρj (f )) =
∑
i≥1

∫
SUp,q

f (g)(ρj (g)ψi, ψi)dµ(g).

Hence in view of Theorem 10.5, it seems reasonable to takeFωj (g) as

Fωj (g) =
∑
i≥1

(ρj (g)ψi, ψi) ∀g ∈ SUp,q . (10.4)
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Proposition 10.6. The locally summable functionFωj on SUp,q is an invariant eigendis-
tribution ofZ on SUp,q . That is, (zFωj )(g) = χωj (z)Fωj (g)∀g ∈ SUp,q .

Proof. The invariance follows from the conjugation invariance of the trace of(ρj (g)ψi, ψk)

underSUp,q . That it is an eigendistribution can be seen as follows. From Proposition 10.4,
(zTωj )(f ) = χωj (z)Tωj (f )∀f ∈ C∞c (SUp,q). Now, from Theorem 10.5,

(zTωj )(f ) = Tωj (z
t f ) =

∫
SUp,q

(zt f )(g)Fωj (g)dµ(g) =
∫

SUp,q
f (g)(zFωj )(g)dµ(g),

andχωj Tωj (f )=χωj (z)
∫

SUp,q
f (g)Fωj (g)dµ(g). Hence(zFωj )(g)=χωj (z)Fωj (g). �

The uniqueness of this invariant eigendistributionFωj is given by the following theorem
[5].

Theorem 10.7 (Harish-Chandra [5–14]).Given an elementξ(j)αuj ∈ H ′∗
(j) which corre-

sponds to a given representation(ρj ,Hj ) ∈ ωj there exists exactly one invariant eigendis-
tribution Fωj of Z on SUp,q . This distribution has the following properties:

1. Where the analytic functionsDn−1(g) on SUp,q is as defined in Section4, supg∈SU′p,q
|Dn−1(g)|1/2|Fωj (g)| <∞.

2. For h(j) ∈ H ′
(j),

Fωj (h(j)) = (∆(j)(h(j)))
−1

∑
w∈W(SUp,q ,H ′(j))

sgn(w)ξ(j)αuj (wh(j)).

Now, from (7.8) and Proposition 10.6, one has, forh(j) ∈ H ′
(j),

((∆(j)(h(j)))
−1γ (z) ◦∆(j)(h(j)))Fωj (h(j)) = χωj (z)Fωj (h(j)).

In other words,

γ (z)(∆(j)(h(j))Fωj )(h(j)) = χωj (z)∆(j)(h(j))Fωj (h(j)),

whereγ is the Harish-Chandra homomorphism. Let

Ξj(h(j)) := ε(j)R(h(j))∆(j)(h(j))Fωj (h(j)), (10.5)

whereε(j)R(h(j)) is as defined in (4.9). Then from Theorem 10.7, forh(j) ∈ H ′
(j),

Ξj(h(j)) = ε(j)R(h(j))
∑

w∈W(SUp,q ,H ′(j))

sgn(w)ξ(j)αuj (h(j)). (10.6)

Using (4.10), one hasε(j)R(wh(j))∆(j)(wh(j)) = εR(w)ε(j)R(h(j))∆(j)(h(j)). Then

Ξj(wh(j)) = εR(w)Ξj (h(j)),
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and by (4.10)Ξj is skew symmetric under the symmetric groupsSp−j andSq−j , sym-
metric underSj , and even underP(j). Furthermore, from (10.5) and Proposition 10.6, one
obtains

γ (z)Ξj (h(j)) = χωj (z)Ξj (h(j)), h(j) ∈ H ′
(j). (10.7)

Using (8.1) and (10.6), one obtains

n∏
k=1

(
h(j)k

∂

∂h(j)k
− u(j)k

)
Ξj(h(j)) = 0. (10.8)

Solving forΞj(h(j)), one obtains a general solution

Ξj(h(j)) =
∑
σ∈Sn

pσ (h(j)1, . . . , h(j)n)

n∏
k=1

(h(j)k)
σ(u(j)k),

wherepσ (· · · ) denotes a polynomial in the respective argument(· · · ).
The invariant eigendistributionFωj of Z on SUp,q is also an eigendistribution of the

centerZ(SUp,q) of SUp,q since from (10.1) and (10.4),

Fωj (gz) =
∑
i≥1

(ρj (gz)ψi, ψi) = ηωj (z)Fωj (g) ∀g ∈ SUp,q, z ∈ Z(SUp,q).

As in Section 2, the center ofSUp,q is given byZ(SUp,q) = {℘k
0In : ℘0 = eι(2π/n)k, k ∈

Z}. Since, for℘ ∈ Z(SUp,q), ηωj (℘) = ℘m
0 , m ∈ Z one hasFωj (g℘) = ℘m

0 Fωj (g)∀g ∈
SUp,q . Furthermore,Fωj can be extended to the eigendistributionFPj

onUp,q , wherePj

denotes the class of unitary representations ofUp,q which contains the unitary represen-
tations induced by the unitary representations ofSUp,q in the classωj . If ζ ∈ T = {z ∈
C : |z| = 1}, then the mapping(ζ, g) �→ gζ mapsT × SUp,q ontoUp,q . Thus by using
(10.1) and (10.4), one obtains forUp,q, g ∈ SUp,q, FPj

(gζ ) = ζmFωj (g). All invariant
eigendistributions onSUp,q which are also global characters of a quasi-simple irreducible
representation(ρj ,Hj ) of SUp,q (orUp,q ) fulfills the above condition for somem. That is,
one has the following lemma.

Lemma 10.8. If ℘ ∈ Z(SUp,q), f℘ ∈ C∞c (SUp,q) such thatf (g℘−1) = f℘(g)∀g ∈
SUp,q , then℘m

0 Tωj (f ) = Tωj (f℘).

Proof. We have

℘m
0 Tωj (f )=

∫
SUp,q

f (g)℘m
0 Fωj (g)dµ(g) =

∫
SUp,q

f (g)Fωj (g℘)dµ(g)

=
∫

SUp,q
f (g℘−1)Fωj (g)dµ(g) =

∫
SUp,q

f℘(g)Fωj (g)dµ(g)

= Tωj (f℘). �
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Remark. However, there may also exist invariant eigendistributions onSUp,q , for cer-
tain choices ofp andq, which do not satisfy the above condition for anym. An example
of such a distribution forSU(1,1) can be found as a linear combination of the charac-
ters of two non-equivalent irreducible unitary representations with the same infinitesimal
characterχ .

Proposition 10.9. For everyf ∈ C∞c (SUp,q) there exist functionsfm ∈ C∞c (SUp,q), m ∈
Z such thatfm(g℘) = ℘m

0 f (g) for all ℘ ∈ Z(SUp,q), g ∈ SUp,q , and such that f can
be uniquely expressed asf = f0 + · · · + fn−1. The mappingf �→ fm is continuous with
respect to the usual topology ofC∞c (SUp,q).

Proof. Let α℘ : C∞c (SUp,q) → C∞c (SUp,q) be the mapping defined by(α℘f )(g) =
f (g℘), where℘ ∈ Z(SUp,q), g ∈ SUp,q, f ∈ C∞c (SUp,q). Then, since℘n

0 = 1, one has
thatαn℘ = I = α℘−1α℘ = α℘α℘−1, whereI is identity mapping onC∞c (SUp,q). Hence,
since for non-identity℘ ∈ Z(SUp,q), the set

{℘0 = ℘n,℘1, . . . , ℘n−1}

forms the set ofnth roots of identity, one obtainsαn℘ − I = ∏n−1
k=0(α℘ − ℘k

0I ) = 0. After
taking the derivative with respect toα℘ one has

n−1∑
m=0

n−1∏
k=0
k �=m

(α℘ − ℘k
0I ) = nαn−1

℘ = nα℘−1.

In other words, one finds that
∑n−1

m=0Fm = I , whereFm := (1/n)α℘
∏n−1

k=0, k �=m(α℘ −
℘k

0I ), such that(α℘ − ℘m
0 )Fm = 0. That is,α℘Fm = ℘m

0 Fm. Let fm := Fmf . Then
α℘fm = ℘m

0 fm. SinceF0 + · · · + Fn−1 = I , one obtainsf0 + · · · + fn−1 = f , which
is the desired decomposition. The decomposition is unique as it depends only uponF0 +
· · · + Fn−1 = I . The mappingf �→ fm = Fmf is clearly continuous by the continuity
of f on SUp,q and hence the continuity ofFm. Furthermore,fm(g℘) = (α℘fm)(g) =
℘mfm(g). �

Proposition 10.10. For every distribution F on SUp,q there exist distributionsFm, m ∈ Z

on SUp,q such thatFm(g℘) = ℘−m0 Fm(g) for all g ∈ SUp,q, ℘ ∈ Z(SUp,q), and such
that F can be uniquely expressed asF = F0 + · · · + Fn−1. Where F is an invariant
eigendistribution, allFm are also invariant eigendistributions.

Proof. Let F be a distribution onSUp,q . Let Fm, m = 0, . . . , n − 1 be distributions on
SUp,q satisfying, whereg ∈ SUp,q, f ∈ C∞c (SUp,q),

∫
SUp,q

f (g)Fm(g)dµ(g) =
∫

SUp,q
fm(g)F (g)dµ(g).
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Summing overm and usingf0 + · · · + fn−1 = f , one obtains the unique decomposition
F0 + · · · + Fn−1 = F . Furthermore,∫

SUp,q
f (g)Fm(g)dµ(g)

=
∫

SUp,q
fm(g)F (g)dµ(g)

=
∫

SUp,q
fm(g℘)F (g℘)dµ(g) = ℘m

0

∫
SUp,q

fm(g)F (g℘)dµ(g)

= ℘m
0

∫
SUp,q

(α℘−1f )(g℘)F (g℘)dµ(g)

= ℘m
0

∫
SUp,q

(α℘−1f )g℘F (g℘)dµ(g) = ℘m
0

∫
SUp,q

(α℘−1f )(g℘)Fm(g℘)dµ(g)

= ℘m
0

∫
SUp,q

f (g)Fm(g℘)dµ(g).

Hence
∫

SUp,q
f (g)(Fm(g) − ℘m

0 Fm(g℘))dµ(g) = 0. Therefore,Fm(g℘) = ℘−mFm(g).
That allFm are invariant eigendistributions wheneverF is an invariant eigendistribution
follows immediately from the unique decomposition ofF . �

Proposition 10.11. Letf, h ∈ C∞c (SUp,q). Then there exist̃f , h̃ ∈ C∞c (Up,q) such that∫
SUp,q

f (g)h(g)dµ(g) =
∫
Up,q

f̃ (g)h̃(g)dµ(g),

wheredµ is the Haar measure on the respective group.

Proof. As in Proposition 10.9,f = f0 + · · · + fn−1 ∈ C∞c (SUp,q) and h = h0 +
· · · + hn−1 ∈ C∞c (SUp,q) such that fork �= l,

∫
SUp,q

fk(x)hl(x)dµ(x) = 0. Extend every

functionfk andhk to functionsf̃k andh̃k in C∞c (Up,q) such that forζ ∈ T, g ∈ SUp,q ,
and 0≤ k ≤ n− 1, f̃k(gζ ) = ζ kfk(g) andh̃k(gζ ) = ζ khk(g). Consequently, one has for

k �= l,
∫
Up,q

f̃k(g)h̃l(g)dµ(g) = 0. Definef̃ = f̃0+ · · ·+ f̃n−1 andh̃ = h̃0+ · · ·+ h̃n−1.

Then, for anyf, h ∈ C∞c (SUp,q),

∫
SUp,q

f (g)h(g)dµ(g)=
n−1∑
k=0

∫
SUp,q

fk(g)hk(g)dµ(g)=
n−1∑
k=0

∫
SUp,q

f̃k(gζ )h̃k(gζ )dµ(g)

=
n−1∑
k=0

∫
Up,q

f̃k(g)h̃k(g)dµ(g) =
∫
Up,q

f̃ (g)h̃(g)dµ(g). �

Remark. LetH̃j , 0 ≤ j ≤ p denote the Cartan subgroups ofUp,q . One has then thatHj =
H̃j ∩ SUp,q . Similarly, the Cartan subalgebrash̃j of Up,q are such thathj = h̃j ∩ sup,q .
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One has following correspondences:

SUp,q Up,q

(h(j)1, . . . , h(j)n), h(j)1 · · ·h(j)n = 1 (h(j)1, . . . , h(j)n)(
∂

∂y(j)1
, . . . ,

∂

∂y(j)n

)
,

(
∂

∂x(j)1
, . . . ,

∂

∂x(j)n

)
,

∂

∂y(j)k
:= ∂

∂x(j)k
− 1

n

(
∂

∂x(j)1
+ · · · + ∂

∂x(j)n

)
, x(j)k := ln(h(j)k), 1≤ k ≤ n

∂

∂y(j)1
+ · · · + ∂

∂y(j)n
= 0, 1≤ k ≤ n

(u′(j)1, . . . , u
′
(j)n), (u(j)1, . . . , u(j)n)

u′(j)k := u(j)k − 1

n
(u(j)1+ · · · + u(j)n),

u′(j)1+ · · · + u′(j)n = 0, 1≤ k ≤ n

For j �= 0, the parameters that describe the representations inωj can be given as

(m(j)1, . . . , m(j)p−j , σ(j)p−j+1, . . . , σ(j)p+j , m(j)p+j+1, . . . , m(j)n),

whereσ(j)k is given in terms ofr(j)k as in (8.2),σ(j)p+i = σ̄(j)p−i+1, i = 1, . . . , j , and

m(j)1 ≥ · · · ≥ m(j)p−j ≥ m(j)p+j+1 ≥ · · · ≥ m(j)n with m(j)k ∈ Z.

Let m(j) := m(j)1 + · · · + m(j)p + m(j)p+j+1 + · · · + m(j)n. Then by extending the re-
lation Fωj (gz) = ηωj (z)Fωj (g), z ∈ Z(SUp,q) for SUp,q to Up,q , one hasFPj

(gζ ) =
ζm(j)FPj

(g), ζ ∈ Z(Up,q), g ∈ Up,q . Now, for any fixedε ∈ Z, let m′(j)k := m(j)k +
ε for 1 ≤ k ≤ p and p + j + 1 ≤ k ≤ n. Let ω′j (and henceP ′

j ) contain the
representations described by the parametersm′(j)k. Then one has from the definition of
FPj

, FP ′
j
(g) = (det(g))εFPj

(g), g ∈ Up,q . Hence forg ∈ SUp,q and for anyε ∈
Z, Fω′j (g) = Fωj (g). This means that the representations(ρ′j ,H

′
j ) ∈ ω′j and(ρj ,Hj ) ∈

ωj are unitarily equivalent, i.e., one of them(j)k and one of them′(j)k can be made
zero.

The invariant eigendistributionFωj as given in (10.4) is a locally summable function and is
analytic onH ′

(j), j = 0, . . . , p. One can extend its domain of definition toH ′
(0)∪· · ·∪H ′

(p).
The necessary and sufficient conditions that the extendedFωj is a locally summable function
and analytic onH ′

(0)∪· · ·∪H ′
(p) are given by the differentiability and continuity ofFωj (h(j)).

These conditions imply by (10.5) the following theorem onΞj .

Theorem 10.12. Let the coordinatesφi, ψj , zk, and z̄m be defined as in(3.8).
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Then(
lim

(φ−
(j)
,ψ−

(j)
)

− lim
(φ+

(j)
,ψ+

(j)
)

)(
1

ι

∂

∂φ(j)p−j

)r
Ξj (h(j))

=
(

lim
(φ−

(j)
,ψ−

(j)
)

− lim
(φ+

(j)
,ψ+

(j)
)

)(
1

ι

∂

∂ψ(j)q−j

)r
Ξj (h(j)) = 0,

[
lim

(φ±
(j)
,ψ±

(j)
)

(
1

ι

∂

∂φ(j)p−j

)r
− lim

ψ±
(j)

(
1

ι

∂

∂ψ(j)q−j

)r]
Ξj(h(j))

= lim
t(j+1)j+1→0

[(
∂

∂z(j+1)j+1

)r
−
(

∂

∂z̄(j+1)j+1

)r]
Ξj+1(h(j+1)),

whereφ±(j) := φ(j)p−j → θ(j+1)j+1± 0 andψ±(j) := ψ(j)q−j → θ(j+1)j+1± 0.

Proof. Follows by induction onr. �

11. Explicit construction of invariant eigendistributions

The functionΞωj introduced in Section 10 satisfies

Ξωj (wh(j)) = εR(w)Ξj (h(j)), h(j) ∈ H ′
(j), w ∈ W(SUp,q,H

′
(j)),

and is skew symmetric under the symmetry groupsSp−j andSq−j , symmetric under the
symmetry groupSj , andevenunderPj . Using these properties, one can constructΞj , hence
Fωj , explicitly. Define the sets

In = {1,2, . . . , n}, Ip = {i1, i2, . . . , ip}, Iq = {ip+1, ip+2, . . . , in} = In − Ip,

whereik ∈ In are assumed to satisfyii < i2 < · · · < ip < ip+1 < ip+2 < · · · <
in. For j = 1,2, . . . , p, definej -tuples from the elements ofIp andIq , respectively, as
(ia, ia+1, . . . , ia+j−1), a = 1,2, . . . , p−j+1 and(ib, ib+1, . . . , ib+j−1), b = p+1, p+
2, . . . , n− j + 1. Let

[σp] = (−1)pqsgn

(
1 2 · · · p p + 1 p + 2 · · · n

i1 i2 · · · ip ip+1 ip+2 · · · in

)
,

[j σa ] = sgn

(
i1 i2 · · · ip−j ip−j+1 · · · ip

i′1 i′2 · · · i′p−j ia · · · ia+j−1

)
,

[j σb] = sgn

(
ip+1 ip+2 · · · ip+j ip+j+1 · · · in

ib ib+1 · · · ib+j−1 i′p+j+1 · · · i′n

)
,

where for 1≤ k ≤ p, i′k ∈ Ip − {ia, ia+1, . . . , ia+j−1} := Ia such thati′1 < i′2 <

· · · < i′p−j , and, forp + 1 ≤ k ≤ n, i′k ∈ Iq − {ib, ib+1, . . . , ib+j−1} := Ib such that
i′p+j+1 < i′p+j+2 < · · · < i′n.
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As noted earlier, the Cartan subgroupHj induces discrete series representations forj = 0
and continuous series representations forj = 1,2, . . . , p. However, forj �= 0, one can
also obtain a discrete representation from the continuous representation as the complex
parameters in (8.2) are chosen to be integers, i.e., asσ(j)k ∈ C are chosen to bem(j)k ∈ Z

for p−j+1≤ k ≤ p+j . Similarly, a continuous representation corresponding to a Cartan
subgroupHm, m �= 0 can be obtained from that induced byHk, m < k �= 0. Thus in order to
include such representationsin the limit, it is necessary to introduce a parameterK such that
0 ≤ K ≤ j ≤ p. Correspondingly, we say that the representation is oftype-(K, j) when the
replacement of(j−K) complex parameters with integer parameters has been made. Clearly,
the representation of type-(K, j) is equivalent to the representation of type-(K, j ′), j �= j ′.
This implies that every non-equivalent representation can be identified byK. Consequently,
a class of equivalent representations can be denoted byωK, and a representation in this class
is parameterized by

ΛK = {m1, . . . , mp−K, σp−K+1, . . . , σp, σp+1, . . . , mp+K+1, . . . , mn−1},
mk ∈ Z, σk ∈ C (11.1)

such thatσp+i = σ̄p−i+1, i = 1, . . . , j , the bar denoting the complex conjugation.
From (8.3) and (10.6), the function which is skew symmetric with respect toSp−j ⊂

W(SUp,q,H ′
(j)) can be obtained as

IaA(e
ιφ)=

∑
σ∈Sp−j

[σ ]
p−j∏
k=1

(eιφ(j)k )
mi′

σ(k)

= det



(eιφ(j)1)

mi′1 · · · (eιφ(j)1)
mi′

p−j
...

. . .
...

(eιφ(j)p−j )
mi′1 · · · (eιφ(j)p−j )

mi′
p−j


 , i′k ∈ Ia, (11.2)

where eιφ := {eιφ1, . . . ,eιφp−j }, and [σ ] is the sign of a permutation ofp − j elements
{1,2, . . . , p − j}. Similarly, the function which is skew symmetric with respect toSq−j is
given by

AIb(e
ιψ )=

∑
σ∈Sq−j

[σ ]
q−j∏
k=1

(eιψ(j)k )
mi′

p+j+σ ′(k)

= det



(eιψ(j)q−j )

mi′
p+j+1 · · · (eιψ(j)q−j )mi′n

...
. . .

...

(eιψ(j)1)
mi′

p+j+1 · · · (eιψ(j)1)mi′n


 , i′k ∈ Ib, (11.3)

where eιψ := {eιψq−j , . . . ,eιψ1}, and [σ ] is the sign of a permutation ofq − j elements
{1,2, . . . , q − j}.

Now, one can obtain a function which is symmetric with respect toSj and even with
respect toP(j) as
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Ia S
K

Ib
(ez)=

∑
σ∈Sj

σ (1)<···<σ(K)
σ (K+1)<···<σ(j)

K∏
k=1

(
ez(j)k

|ez(j)k |
)λia+σ(k)−1 |ez(j)k |ιria+σ(k)−1

j∏
l=K+1

sgn(ia − ib)

×
{
(ez(j)lλia+σ(l)−1 e−z̄(j)lλib+σ(l)−1 ), ε > 0

(e−z̄(j)lλia+σ(l)−1 ez(j)lλib+σ(l)−1 ), ε < 0,
(11.4)

where ez := {ezj ,ezj−1, . . . ,ez1,e−z̄1,e−z̄2, . . . ,e−z̄j }, andε = sgn(ia−ib)sgn(t(j)k), K+
1≤ k ≤ j, t(j)k = R(z(j)k).

The functionΞj (now denoted byΞjΛK ) for a givenIp is given by

ΞjΛK(e
ιφ,ez,eιψ ) =

∑
Ia,Ib

[σa ][σb]IaA(e
ιφ)IaS

K

Ib
(ez)AIb (e

ιψ ), (11.5)

whereΛK is as in (11.1). We obtain the following theorem.

Theorem 11.1. The invariant eigendistributionFωj on SUp,q (now denoted byFjΛK ) as
given in Theorem10.7can be now given as

Discrete series:

FjΛ0(e
ιφ,ez,eιψ ) =

(
ε(j)R(h(j))

∆(j)(h(j))

)
ΞjΛ̄0

(eιφ,ez,eιψ )

=
(
ε(j)R(h(j))

∆(j)(h(j))

)∑
Ia,Ib

[j σa ][ j σb]IaA(e
ιφ)IaS

0
Ib
(ez)AIb (e

ιψ ),

0 ≤ j ≤ p. (11.6)

Continuous series:

FjΛK(e
ιφ,ez,eιψ ) =

(
ε(j)R(h(j))

∆(j)(h(j))

)
ΞjΛ̄K

(eιφ,ez,eιψ )

=
(
ε(j)R(h(j))

∆(j)(h(j))

)∑
Ia,Ib

[j σa ][ j σb]IaA(e
ιφ)IaS

K

Ib
(ez)AIb (e

ιψ ), 1≤ K ≤ j ≤ p,

(11.7)

where for0 ≤ K ≤ j ≤ p, Λ̄K = ΛK withmk = lk− (n−k), k = 1, . . . , n, l1 > · · · > ln.

Thus the leading term ofΞjΛ̄K
is
∏

k(h(j)k)
lk which, when divided by∆(j)(h(j)), gives

one of the desired leading term
∏

k(h(j)k)
mk for the characterFjΛK in terms of the highest

weightsΛK, given by (11.1). The expression for the discrete series withj = 0 has also
been obtained in [4,19–21].

Example. Whenp = q = 1, i.e., for the groupSU1,1 ∼= SL2(R) ∼= SO2,1, we have
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0 ≤ K ≤ j ≤ 1. The Cartan subgroups are given by

H0 =
{(

eιφ1 0
0 e−ιφ1

)
, φ1 ∈ R

}
,

and

H1 =
{(

et1 0
0 e−t1

)
, t1 ∈ R

}
.

All the three cases(j = K = 0; j = 1, K = 0; j = K = 1) can be determined from (11.6)
and (11.7), and we get

F0m1(e
ιφ1) = eιm1φ1

eιφ1 − e−ιφ1
, F1m1(e

t1) = e−|m1t1|

|et1 − e−t1|sgn(t1),

F1λ1(e
ιt1) = eιλ1t1 + e−ιλ1t1

|et1 − e−t1| .

These special cases closely agree with the results [14] obtained by direct computation
for SU1,1. For the groupSU2,2, there are six character functions given byF0Λ0, F1Λ0,

F2Λ0, F1Λ1, F2Λ1, F2Λ2, whereΛ0 = {m1,m2,m3}, Λ1 = {m1, σ2,m3}, Λ2 = {σ1, σ2,

σ3}, σk = (λk, rk). These functions can be directly determined from (11.6) and (11.7).

Theorem 11.2. The eigendistributionsFjΛK are locally summable functions and are ana-
lytic onH ′

0 ∪ · · · ∪H ′
p.

Proof. One must show that the functionsΞjΛK satisfy the conditions given in Theorem
10.12. From Eqs. (11.2)–(11.5), we get

(
1

ι

∂

∂φ(j)p−j

)r
Ia

A(eιφ(j) )

=
(

1

ι

∂

∂φ(j)p−j

)r
det




(eιφ(j)1)
m(j)i′1 · · · (eιφ(j)1)

m(j)i′
p−j

...
. . .

...

(eιφ(j)p−j )
m(j)i′1 · · · (eιφ(j)p−j )

m(j)i′
p−j




=
∑
α∈Ia

[σα](mr
(j)α eιθ(j+1)j+1m(j)α )det




e
ιφ(j)1m(j)i′′1 · · · e

ιφ(j)1m(j)i′′
p−j−1

...
. . .

...

e
ιφ(j)p−j−1m(j)i′′1 · · · e

ιφ(j)p−j−1m(j)i′′
p−j−1


 ,

i′k ∈ Ia,
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1

ι

∂

∂ψ(j)q−j

)r
AIb (e

ιψ(j) )

=
(

1

ι

∂

∂ψ(j)q−j

)r
det



(eιψ(j)q−j )

m(j)k′2 · · · (eιψ(j)q−j )
m(j)k′

q−j

...
. . .

...

(eιψ(j)2)
m(j)k′2 · · · (eιψ(j)2)

m(j)k′
q−j




=
∑
β∈Ib

[σβ ](mr
(j)β eιθ(j+1)j+1m(j)β )det




e
ιψ(j)q−j−1m(j)k′′2 · · · e

ιψ(j)q−j−1m(j)k′′
q−j−1

...
. . .

...

e
ιψ(j)2m(j)k′′2 · · · e

ιψ(j)2m(j)k′′
q−j−1


 ,

k′s ∈ Ib,

(
∂r

∂zr(j+1)j+1
− ∂r

∂z̄r(j+1)j+1

)
Ia

A
K

Ib
(ez) = (mr

(j)α −mr
(j)β)eιθ(j+1)j+1(m(j)α+m(j)β ),

α ∈ Ia, β ∈ Ib,
where

[σα] = sgn

(
i′1 · · · i′p−j−1 i′p−j
i′′1 · · · i′′p−j−1 α

)
,

[σβ ] = sgn

(
k′2 · · · k′q−j−1 k′q−j
k′′2 · · · k′′q−j−1 β

)
,

satisfying [σa ] · [σα] × [σb] · [σβ ] = [σa,α] × [σb,β ], where

[σa,α] = sgn

(
i1 · · · ia−2 ia−1 ia ia+1 · · · ia+j−2 ia+j−1 ia+j · · · ip
i′′1 · · · i′′a−2 i′ia i′ia+1

i′ia+2
· · · i′ia+j−1

α i′′a+j · · · i′′p

)
,

[σb,β ] = sgn

(
ip+1 · · · ib−2 ib−1 ib ib+1 · · · ib+j−2 ib+j−1 ib+j · · · in−1

i′′p+1 · · · i′′b−2 k′ib k′ib+1
k′ib+2

· · · k′ib+j−1
β i′′b+j · · · i′′n−1

)
.

Hence one can see that the functionsΞjΛK(e
ιφ,ez,eιψ ) thus obtained indeed satisfy the

conditions given in Theorem 10.12, and that the distributionsTωKj
on SUp,q defined in

Theorem 10.5 are invariant eigendistributions satisfying Proposition 10.6. �

12. Tempered invariant eigendistributions

We now show that the invariant eigendistributionsTω0
j

andTωKj
aretempered[1,11–13].

Let, as before,K be a maximal compact subgroup ofSUp,q andap (see Section 3) be
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a fixed maximal abelian subspace ofp. Define a norm onsup,q by putting ‖X‖2 =
−B(X, θX), X ∈ sup,q (see Section 2). Then sinceSUp,q = KApK, Ap = eap , there
exists a unique functionσ on SUp,q such thatσ(k1gk2) = σ(g), k1, k2 ∈ K, g ∈ SUp,q
andσ(eXp) = ‖Xp‖, Xp ∈ ap, choosek ∈ K anda ∈ Ap such thataka = k, and for
g1, g2 ∈ SUp,q , one obtainsσ(a−1) = σ(k−1ak) = σ(a) andσ(g1g2) ≤ σ(g1)+ σ(g2).

Now, for g ∈ SUp,q , define

Φ(g) =
∫
K

e−ρ(Xp(gk)) dµ(k),

whereρ = 1
2

∑
α∈R+mαα (see Section 3),mα being the multiplicity of the weightα, eXp ∈

Ap.Φ is nothing more than the zonal spherical function onSUp,q corresponding to the trivial
linear function onap. Since any two maximal abelian subspaces ofp areK-conjugate,Φ is
actually independent of the choice ofap. It is well known that the functionΦ satisfies the
following properties:

1. Φ(e) = e, Φ(k1gk2) = Φ(g) = Φ(g−1), k1, k2 ∈ K, g, e ∈ SUp,q, e being the
identity element.

2. Φ(g1)Φ(g2) =
∫
K
Φ(g1kg2)dµ(k), g1, g2 ∈ SUp,q .

3. Φ(a−1) = Φ(k−1ak) = Φ(a), a ∈ Ap andk ∈ K such thataka= k.

4. There exist numbersc, d such that for anya ∈ A+p = ea
+
p , Φ(a) ≤ c e−ρ(ln(a))(1+

σ(a))d , wherea+p = {Xp : α(Xp) ≥ 0 for allα in the positive Weyl chamber inap}.
5. There exists a numberr ≥ 0 such that

∫
SUp,q

Φ2(x)(1+ σ(x))−r dµ(x) <∞.

6. There exists a numberr ≥ 0 such that (see Section 4)
∫

SUp,q
|Dn−1(x)|−1/2Φ(x)(1+

σ(x))−r dµ(x) <∞.

For f ∈ C∞(SUp,q), D ∈ D(SUp,q) and r ≥ 0, we define a seminorm‖f ‖D,r =
supg∈SUp,q |Df(g)|(1+σ(g))rΦ−1(g). LetS(SUp,q) denote theSchwartz space, consisting
of all functionsf ∈ C∞(SUp,q) such that‖f ‖D,r <∞ for all D ∈ D(SUp,q) andr ≥ 0.
One usually topologizesS(SUp,q) by means of the set of seminorms‖f ‖D,r which make
S(SUp,q) a Fréchet space. Clearly,C∞c (SUp,q) ⊆ S(SUp,q) is a continuous inclusion, and
C∞c (SUp,q) is dense inS(SUp,q). Also, the inclusionS(SUp,q) ⊂ L2(SUp,q) is continuous.

Let Sj (SUp,q), 0 ≤ j ≤ p denote the set of all functionsf ∈ S(SUp,q) such that
Sj (SUp,q) is a closed subset ofS(SUp,q) for eachj , andS(SUp,q) = ⊕jSj (SUp,q), the
sum being smooth. LetΠj denote the projection ofS(SUp,q)onSj (SUp,q)corresponding to
the above direct sum. Then by smoothness,Πj are continuous endomorphisms ofS(SUp,q).
LetHj denote the closure ofSj (SUp,q) in the Hilbert spaceH = L2(SUp,q). ThenH is
the orthogonal sum ofHj , 0 ≤ j ≤ p, andΠjf, f ∈ S(SUp,q) is actually the orthogonal
projection off inHj .

Now, taking ln in (3.7), one finds that the vector part of ln(h(j)) is given by the matrix
with tk = R(zk) at the position given by the(p − k + 1)th row and(p + k)th column and
also at the position given by the(p + k)th row and the(p − k + 1)th column, and having
all other entries zero. Hence ifh(j) ∈ Hj then we have

σ(h(j)) =
√

2(t21 + · · · + t2j )
1/2 (12.1)
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showing that the mappingh(j) �→ (σ (h(j)))
2 is a quadratic form onSUp,q . As defined

generally in [10–12], a distributionΘ on SUp,q is called tempered if it admits a unique
continuous extension to the Schwartz spaceS(SUp,q). It has been proved that an invariant
andZ-finite distributionΘ onSUp,q is tempered if and only if we can choosec, r ≥ 0 such
that|Dn−1(g)|1/2|Θ(g)| ≤ c(1+σ(g))r ∀g ∈ G. In other words, if{Hj }denotes a maximal
set of mutually non-conjugate Cartan subgroups ofSUp,q , then the above condition implies
that

sup
h(j)∈Hj

(1+ σ(h(j)))
−r |Dn−1(h(j))|1/2|Θ(h(j))| <∞. (12.2)

Furthermore, ifΘ is tempered, thenΘ(f ) = ∫
G
f (g)Θ(g)dµ(g) for f ∈ S(SUp,q).

Theorem 12.1. The invariant eigendistributionTωj determined by

ΞjΛK(h(j)) = ε(j)(h(j))∆Hj
(h(j))Tωj (h(j)), h(j) ∈ Hj , 0 ≤ j ≤ p

is tempered if and only if there exists a positive integer r such that for every j(
1+

√
2(t2(j)1+ · · · + t2(j)j )

)−r
|ΞjΛK(h(j))|

is bounded by some constant, wheret(j)k = R(z(j)k) for 1≤ k ≤ j .

Proof. Follows from (12.1) and (12.2). �

13. Invariant eigendistributions of contragradient representations

Let g �→ ρj (g) be an irreducible unitary representation ofSUp,q on a Hilbert spaceHj

andρj ∈ ωj ∈ E(SUp,q), whereE(SUp,q) denotes the set of all equivalence classes of

irreducible unitary representations ofSUp,q . Let g† ∈ SUp,q denote the inverse of trans-
posedg. LetH∗j denote the topological dual ofHj , H∗j being equipped with the topology

of bounded convergence. LetH†
j be the subspace ofH∗j consisting of thoseϕ∗ ∈ H∗j for

which the ruleg �→ ρj (g
†)ϕ∗ defines a continuous map ofSUp,q intoH∗j . The spaceH†

j

is closed inH∗j , and the mappingg �→ ρj (g
†) defines thecontragradient representation

of g �→ ρj (g) onH†
j . We denote the contragradient representation by(ρ

†
j ,H

†
j ) (or simply

ρ
†
j ). If Tρj (g) is the character ofg �→ ρj (g), then the characterT †

ρj (g) of its contragradi-

ent representation is given byT †
ρj (g) = Tρj (g

†) = Tρj (ḡ), where the complex conjugate

elementḡ of g is conjugate tog† under some inner automorphism ofSUp,q .

Theorem 13.1. Let Tω0
j
(eιφ,ez,eιψ ) be the invariant eigendistribution of an irreducible

unitary representationg �→ ρj (g) in the discrete seriesω0
j of SUp,q . Then the correspond-

ing contragradient representationg �→ ρj (g
†) is also in the discrete series; its invariant
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eigendistribution is given byT †
ω0
j

(e−ιφ,ez̄,e−ιψ ) and is specified by the integer param-

eters{−m(j)n−1,−m(j)n−2, . . . ,−m(j)1} satisfyingm(j)1 > m(j)2 > · · · > m(j)p and
m(j)p+1 > m(j)p+2 > · · · > m(j)n−1.

Proof. As h(j) � h̄(j), where

h(j) = diag{eιφ(j)1, . . . ,eιφ(j)p−j ,ez(j)j , . . . ,ez(j)1,e−z̄(j)1, . . . ,e−z̄(j)j ,
eιψ(j)q−j , . . . ,eιψ(j)1},

h̄(j) = diag{e−ιφ(j)1, . . . ,e−ιφ(j)p−j ,ez̄(j)j , . . . ,ez̄(j)1,e−z(j)1, . . . ,e−z(j)j ,
e−ιψ(j)q−j , . . . ,e−ιψ(j)1}.

one conveniently chooses from Section 11 thatIp � {n− k : k ∈ Ip} := I
†
p . The negative

sign in each exponent can be absorbed with the parametersm(j)1, . . . , m(j)n determining
the character. A suitable ordering may be obtained fromÎnh̄(j)În (see Section 2). From
Theorem 4.3 and from (4.9) and (4.10), we have∆Hj

(h̄(j)) = (−1)(1/2)n(n−1)+j∆Hj
(h(j))

andε(j)R(h̄(j)) = (−1)j ε(j)R(h(j)). Furthermore, from Section 11 one defines the following
permutations:

[σp] � (−1)p(q−1)sgn

(
1 · · · p p + 1 · · · n− 1
n− in−1 · · · n− iq+1 n− iq · · · n− i1

)
:= [σ†

p ],

[j σa ]  sgn


 n− ip · · · n− ip−a+2 n− ip−a+1 · · · n− ip−a−j+2 n− ip−a−j+1 · · · n− i1

n− i′a−1 · · · n− i′1 n− ia · · · n− ia+j−1 n− i′p · · · n− i′a+j




= (−1)j (p−j)+(1/2)j (j−1)[j σa ] := [σ†
a ],

[j σb]  sgn

(
n− in−1 · · · n− in−b+1 n− in−b · · · n− in−b−j+1 n− in−b−j · · · n− ip+1

n− i′b−1 · · · n− i′p+1 n− ib · · · n− ib+j−1 n− i′n−1 · · · n− i′b+j

)

= (−1)j (q−j−1)+(1/2)j (j−1)[j σb] := [σ†
b ].

Consequently, we obtain

IaA(e
−ιφ)= det




(eιφ(j)1)
−m(j)i′

p−j · · · (eιφ(j)1)
−m(j)i′1

...
...

...

(eιφ(j)p−j )
−m(j)i′

p−j · · · (eιφ(j)p−j )−m(j)i′1




= (−1)(1/2)(p−j)(p−j−1)det




(eιφ(j)1)
−m(j)i′1 · · · (eιφ(j)1)

−m(j)i′
p−j

...
...

...

(eιφ(j)p−j )
−m(j)i′1 · · · (eιφ(j)p−j )−m(j)i′

p−j




= (−1)(1/2)(p−j)(p−j−1)
IaA(e

ιφ)
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with

−m(j)i′1 > −m(j)i′2 > · · · > −m(j)i′p−j or m(j)i′p−j > m(j)i′p−j−1
> · · · > m(j)i′1.

AIb (e
−ιψ )= det



(eιψ(j)q−j )

−m(j)i′
n−1 · · · (eιψ(j)q−j )

−m(j)i′
p+j+1

...
...

...

(eιψ(j)2)
−m(j)i′

n−1 · · · (eιψ(j)2)
−m(j)i′

p+j+1




= (−1)(q−j−1)(q−j−2)det



(eιψ(j)q−j )

−m(j)i′
p+j+1 · · · (eιψ(j)q−j )−m(j)i′

n−1

...
...

...

(eιψ(j)2)
−m(j)i′

p+j+1 · · · (eιψ(j)2)
−m(j)i′

n−1




= (−1)(1/2)(q−j−1)(q−j−2)AIb (e
ιψ )

with

−m(j)i′p+j+1
>−m(j)i′p+j+2

> · · · > −m(j)i′n−1
or m(j)i′n−1

>m(j)i′n−2
> · · · > m(j)i′p+j+1

.

Ia S
0
Ib
(ez̄) = (−1)j IaS

0
Ib
(ez).

Substituting the above, for a givenI†
p , in

T
†
ω0
j

(e−ιφ,ez̄,e−ιψ ) =
(
ε(j)R(h̄(j))

∆Hj
(h̄(j))

)∑
a,b

[σ†
a ][σ†

b ]IaA(e
−ιφ)IaS

0
Ib
(ez̄)AIb (e

−ιψ ),

one obtains the desired result. �

14. Adjoint of invariant eigendistributions

Let g �→ ρj (g), g ∈ SUp,q be an irreducible representation ofSUp,q on a Hilbert
spaceHj so thatρj (g) ∈ Aut(Hj ). Then, whereρ∗j (g

−1) denotes the adjoint operator of

ρ(j)(g
−1), the homomorphismg �→ ρ∗j (g

−1) is also an irreducible representation ofSUp,q
onHj . The representationsg �→ ρj (g) andg �→ ρ∗j (g

−1) are equivalent if and only if
there exists a non-degenerate continuous Hermitian inner product onHj which is invariant
underρj (g), g ∈ SUp,q . Let Tωj be the distribution corresponding to the character of the
representationg �→ ρj (g) of SUp,q . One defines its adjoint distribution, denoted byT ∗ωj ,
by ∫

SUp,q
f (x)T ∗ωj (x)dµ(x) = conj

{∫
SUp,q

f ∗(x)Tωj (x)dµ(x)

}
,
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wheref ∗(x) = f (x−1), dµ(x) is a Haar measure onSUp,q , and conj{a} denotes the
complex conjugate numberā of a ∈ C. A distributionTωj on SUp,q is called self-adjoint
if Tωj = T ∗ωj .

Lemma 14.1. T ∗ωj ,0 ≤ j ≤ p is an invariant eigendistribution on SUp,q .

Proof. Let us use the notation of Section 10. Letz ∈ Z, and letz̄ ∈ Z(D(SUp,q)) be the
differential operator onSUp,q defined by, forf ∈ C∞c (SUp,q), (z̄f )(x) = conj{(zf̄ )(x)},
wheref̄ (x) = conj{f (x)}. Clearly,z̄ ∈ Z, az = āz̄ for anya ∈ C, andz1z2 = z1 z2 for any
z1, z2 ∈ Z. Now, for anyf ∈ C∞c (SUp,q),

(zf ∗)(x) = z(f̄ (x−1)) = conj{z̄f (x−1)} = conj{(ˆ̄zf )(x−1)} = (ˆ̄zf )∗(x).
Therefore, replacingz by z̄ one has̄z(f ∗) = (ẑf )∗ ∀z ∈ Z, and from (see Proposition 10.6)
(zTωj )(f ) = χωj (z)Tωj (f ) we get

(zT ∗ωj )(f )= T ∗ωj (ẑf ) =
∫

SUp,q
(ẑf )(x)T ∗ωj (x)dµ(x)

= conj

{∫
SUp,q

(ẑf )∗(x)Tωj (x)dµ(x)

}

= conj

{∫
SUp,q

(z̄f ∗)(x)Tωj (x)dµ(x)

}
= conj{Tωj (z̄f ∗)}

= conj{(ˆ̄zTωj )(f ∗)}=conj{χωj (ˆ̄z)Tωj (f ∗)} = conj{χωj (ˆ̄z)} conj{Tωj (f ∗)}

= conj{χωj (ˆ̄z)} conj

{∫
SUp,q

f ∗(x)Tωj (x)dµ(x)

}

= conj{χωj (ˆ̄z)}
∫

SUp,q
f (x)T ∗ωj (x)dµ(x) = conj{χωj (ˆ̄z)}T ∗ωj (f ).

Furthermore,T ∗ωj is clearly invariant. ThusT ∗ωj is an invariant eigendistribution with the
infinitesimal character, denoted byχ∗ωj ∈ Hom(Z,C), of ρ∗j , given byχ∗ωj (z) = conj

{χωj (ˆ̄z)}. �

Lemma 14.2. T ∗ωj (g) = Tωj (g
−1),0 ≤ j ≤ p, g ∈ SUp,q .

Proof. By the definition of adjoint distribution one has∫
SUp,q

f (x)T ∗ωj (x)dµ(x)

= conj

{∫
SUp,q

f ∗(x)Tωj (x)dµ(x)

}
= conj

{∫
SUp,q

f (x−1)Tωj (x)dµ(x)

}

= conj

{∫
SUp,q

f (x)Tωj (x
−1)dµ(x)

}
=
∫

SUp,q
f (x) conj{Tωj (x−1)}dµ(x).
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Hence, one obtainsT ∗ωj (g) = conj{Tωj (g−1)} ∀g ∈ SUp,q . �

Lemma 14.3. Ξ∗jΛK
(h(j)) = conj{ΞjΛK(h(j))}, h(j) ∈ Hj ,0 ≤ j ≤ p.

Proof. From (10.5) and from the above result, since

conj{ε(j)R(h−1
(j))∆Hj

(h−1
(j))} = ε(j)R(h(j))∆Hj

(h(j)),

one has immediately thatΞ∗jΛK
(h(j)) = conj{ΞjΛK(h

−1
(j))} ∀h(j) ∈ Hj . �

Proposition 14.4. Tωj is self-adjoint if and only ifT ∗ωj (g) = conj{Tωj (g−1)},0 ≤ j ≤
p, g ∈ SUp,q , i.e., if and only ifΞjΛK(h(j)) = conj{ΞjΛK(h

−1
(j))}, h′(j) ∈ Hj .

Proof. The proof follows from the definition of self-adjoint distribution and from Lemmas
14.2 and 14.3. �

Proposition 14.5. If u′(j) = (u′(j)1, . . . , u
′
(j)n−1) corresponds to the infinitesimal character

χωj of Tωj , then that ofT ∗ωj is given byu′j = (u′(j)1, . . . , u′(j)n−1), and, for somew ∈
W(sln(C), h

c
j )
∼= Sn, one has thatu′j = w(u′j ).

Proof. Follows immediately if one takes the complex conjugation operation on Eqs. (8.2)
and (10.8). �

An infinitesimal characterχωj (or u′(j)) is self-adjoint ifχ∗ωj (z) = χωj (z)∀z ∈ Z, or
equivalently, ifX (u′(j)) = X (u′(j))∀X ∈ S(sln(C)). Hence from Proposition 14.5,u′(j) is

self-adjoint if and only ifu′(j) = w(u′(j)) for somew ∈ Sn.
Let T(u′(j)) denote the set of all invariant eigendistributions onSUp,q and letTs(u

′
(j))

denote its subset consisting of all self-adjoint invariant eigendistributions. Analogously, let
K(u′(j)) be the set of all functionsΞjΛK (which are analytic onHj ) satisfying Eq. (10.8), and
Ks(u

′
(j)) be its subset consisting of allΞjΛK ∈ K(u′(j)) functions satisfying the condition

Ξ∗jΛK
(h(j)) = ΞjΛK(h(j)). By Lemma 14.2 the adjointT ∗ωj is an element ofT(u′(j)). Hence

T ′ωj = 1
2(Tωj + T ∗ωj ) andT ′′ωj = (1/2

√−1)(Tωj − T ∗ωj ) are inTs(u
′
(j)). Thus we have the

following theorem.

Theorem 14.6. Assume thatu′(j) is self-adjoint. Then any distributionTωj ∈ T(u′(j)) is

expressed uniquely asTωj = T ′ωj +
√−1T ′′ωj , whereT ′ωj , T

′′
ωj
∈ Ts(u

′
(j)). Analogously,

any functionΞjΛK ∈ K(u′(j)) is uniquely expressed asΞjΛK = Ξ ′jΛK
+√−1Ξ ′′jΛK

, where

Ξ ′jΛK
,Ξ ′′jΛK

∈ Ks(u
′
(j)).

Remark. In the representation theory of Lie algebras one comes across unbounded opera-
tors. The Hellinger–Toeplitz theorem implies that unbounded self-adjoint operators cannot
be defined in all of the Hilbert spaceH. One therefore has to associate with every un-
bounded operatorO its domain of definitionDO (e.g., the Gårding domain). IfDO∗ is
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dense inH, then one definesO∗∗, called the self-adjoint extension ofO. If O∗∗ = O∗ then
O is said to be essentially self-adjoint. Following the Nelson–Stinespring theorem [29]
one can show that for every elliptic elementX (as elliptic differential operator) of the en-
veloping algebraU(sln(C)), the (algebraic) representation operatorT (X) is essentially self-
adjoint.
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