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Abstract

The theory of global characters of semisimple Lie groups as invariant eigendistributions, proposed
by Harish-Chandra, is used to determine explicitly the global charact&@¥,0f. It is shown that
they are invariant, tempered eigendistributionsSiy), ,. The adjoint invariant distributions on
SU, , are studied in detail. For the special caseStf 1, these global characters reduce to the
results already obtained f&U; 1. The paper contains several new results pertaining to the group
SU, , and these results are explicitly used. © 2002 Published by Elsevier Science B.V.

MSC:22D05; 22E47; 43A85
Subj. Class.Lie groups; Lie algebras

Keywords:Representations; Eigendistributions

1. Introduction

Let (p, H) denote an irreducible unitary representation of a real semisimple Lie group
G over a Hilbert spacé{. Let g be the Lie algebra of;. Let K be a maximal compact
subgroup ofG andt be its corresponding Lie algebra. Lggtbe the complexification of.

Then from the representatid@p, H), one obtains thégc, K)-modules, which correspond
to two representations: one gfand the other oK, the latter being the restriction of the
algebra representation gfto ¢&. One of Harish-Chandra’s principal results [6] was that the
spaceH; of K -finite vectors in anirreducible unitary representaiipn) is an irreducible
(gc, K)-module, and that the mapping— #; induces a bijection of the unitary duél
with the set of isomorphism classes of irreducible unit@iy K)-modules. Furthermore,
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he proved [7] that any irreducibl@c, K)-module is of the forn; for some irreducible
representationip, H) which has an infinitesimal character, showing that the formulation
of an arbitrary irreducible representation @fis built into the notion of an irreducible
(gc, K)-module.

An irreducible unitary representatiofp, 7) of a locally compact grougs is said
to be square integrable o if it has a non-zero, square integrable matrix coefficient
(matrix element), given by the function — (p,u,v), x € G, u,v € H. Following
Harish-Chandra, one defines for a representatiori{) of a semisimple Lie grou the
operatorp (f) = fo(x),ox du(x), f € C°(G), which is of trace class. Furthermore, the
linear functional7,, : f — tr(p(f)) is a distribution onG, wherew is the equivalence
class containing the representatign ). T, is called thecharacterof the representa-
tions in w and it determines» completely. Also,T,, is an invariant distribution, i.e., a
distribution that is invariant under all inner automorphisms;off {u;};>1 is an orthonor-
mal basis off{, then forx € G and f € C(G), T,(f) = ZizlfG(pxu,-,ui)f(x)
du(x).

Let 3 denote the center of the universal enveloping algelg [2,5], and lety, €
Hom(3, C) denote the infinitesimal character®f Then for; € 3 andx € G one has the
equationy(pxu;, ;) = Xxw(3)(p®)u;, u;), i > 1 and hence forf € C(G), 3T,(f) =
X0 (3)Tw(f). Thus,T,, is aninvariant eigendistributioron G, andx,,(3) is the eigenvalue
of 3[8,10].

Furthermore, Harish-Chandra showed that distinct series of representations induced by a
complete system of mutually non-conjugate Cartan subgroups [25] would fall into distinct
classes in the unitary duél. He further showed [11,12] th& has a discrete series if and
only if it has a compact Cartan subgroup and that the latter exists if and only if the réhk of
is equal to the rank of . Also, Harish-Chandra established that the representations induced
by a Cartan subgroufi can be parameterized by the parameters of the charact&r's thie
set of all regular elements &f, and he determined these characters as invariant eigendistri-
butions. In particular, for a compact Cartan subgroup, he proved that the corresponding dis-
crete series of representations are square integrable and that this series of representations is
complete.

The discrete and continuous series of irreducible unitary representati@is, gf, as-
sociated with thgmin{p, ¢} + 1) non-conjugate Cartan subgroups, have been explicitly
obtained in [27,28,31]. In [4], a class of degenerate representatid®id,of and the trace
of those representations are obtained. The invariant eigendistributions of Laplace opera-
tors of SU, , associated with discrete series and an expression for the Plancherel formula
for SU, , have been obtained in [19-22]. The gro8p), , has one discrete series of
representations, associated with the compact Cartan subgroup, afyd gjimumber of
continuous series of representations, associated with thgpmjh non-compact Cartan
subgroups.

The organization of this paper is as follows. In Section 2, basic algebraic structures of
SU, , are discussed and relevant notations are established. B§ostant-Sugiura theo-
rem([25,29], there existmin{p, ¢4} 4+ 1) non-conjugate Cartan subgroups 8, ,; these
subgroups are obtained explicitly in Section 3 through root structur8sgf;. In Section
4, the characters are introduced and various properties of Harish-Chadensisy func-
tions A, some of which are new, have been derived. In Sections 5 and 6, some basic and
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relevant properties of the universal enveloping algebrsl @f, C) are discussed, and its
relation to the symmetric algebra of differential operators is established Hahish-
Chandra homomorphism, related to each Cartan subalgebra, is obtained in Section 7,
and after introducing representation parameters in Section 8, a representation of the al-
gebra ofSU, , on theGarding domain is defined, and some of its basic properties are
given in Section 9. Thelobal charactersof SU, , associated with each Cartan subgroup

H;, 0 < j <min{p, g}, are explicitly obtained in Sections 10 and 11. Theorem 11.1 gives
the main results. Our results agree with the casg fer 0 obtained in [4,19-21], and for

SUj 1 obtained in [14], the latter is found to be useful in scattering theory. It is then shown

in Section 12 that these global characters are the invariant eigendistributions as defined by
Harish-Chandra, and that these eigendistributions are tempered. In Section 13, the invariant
eigendistributions of the contragradiant representatioB&)gf, are obtained, and the result

is given in Theorem 13.1. Finally, the adjoint invariant eigendistributions are discussed in
Section 14, and some of their properties are proved. We have given here and there some
materials, which are somewhat expository in nature, in order to establish notations and defi-
nitions and to provide the basic concepts required to prove and to foster understanding of the
main results.

2. Basic algebraic structures and notation

Let SU, 4, p + g = n, denote the pseudounitary, unimodular Lie group defined in
matrix realization bySU, , = {g € M,x,(C) : det(g) = 1, g*Jog = Jo}, wherex
denotes conjugate transpose avidy,, (C), homeomorphic to HoC", C"), denotes a
matrix manifold of(n x n) matrices ovelC. For definiteness, we take < ¢ throughout.
Themetric operator/y is given by

I, O
(2 )
0 -1,
with 1,, an (m x m) unit matrix. The matrix operataf is bounded, self-adjoint7; =
Jo), involutory(JO2 = I,), and unitary Jy = \70*1). The groupSU, , is a non-compact,
simple Lie group which leaves the Hermitian inner productJou) = 25=1ﬁk”k —
Zzzlﬁp+kup+k Yu € H invariant, whereH is ann-dimensional Hilbert space ovét.
That is, one has for af € SU, , and for allu € H, (u, Jou) = (gu, Jogu). For the
orthonormal basisey, ..., e,} of H, whereg; is then-tuple (0,...,0,1,0,...,0), the
inner product satisfiege;, Joex) equals 0 ifj # k, equals 1if 1< j = k < p, and
equals—1if p+1< j =4k <n = p+gq. The center oBU, , is given byZ(SU, ,) =
{¢@/mmp  m=0,1,...,n -1, « = /=1}. HenceSU, , is connected, but not simply
connected. Furthermore, the gro8pJ, , is reductive since it is closed under conjugate
transpose.
Itis possible to consider different matrix realizations3tJ, , by redefining the metric
operatorJp. For example, one may define the metric operatarsO < k < p, and obtain
matrix realizations oSU, , asSU;’q = {g € Mx,(C) : det(g) = 1, g*Trg = Tk},
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where
0 0 I
I,_ 0
J=]o0 ( p=k ) 0
~ O B q_k
Iy 0 0

with the (k x k) matrix fy = (imn) defined byimn = 1if m +n = k + 1 and= 0
otherwise. There exists orthogonal transformati®ps 0 < k < p, which are elements of
the orthogonal group .4, , under which the metric operatgp transforms aé)k_ljook =
Jr and for which g, Jo] = 0. A matrix realization of); is given explicitly in [27]. Now,
for everygq) € SU; , one hasig) 05 = go € S, = SU, ,. The groupSy, , for
eachk, acts on the Hilbert spade*, leaving the Hermitian inner produgt, Jiu), u € H*,
invariant. That is, for alg € SUjM, one haggu, Jxgu) = (u, Jyu), 1 < k < p. In what
follows the realization 06U, , will correspond to the realization Slfl’,, :

The groupSU, , is a subgroup of the special linear gro8p, (C) = {g € M;x,(C) :
det(g) = 1}, which is a subgroup of the general linear grdsip, (C) = {g € M, x,(C) :
det(g) # 0}. The Lie algebras o&L,(C) andGL, (C) are denoted, respectively, b, (C)
andgl, (C). Specifically,si, (C) is defined by, (C) = {X € M, »,(C) : tr(X) = 0}. The
Lie algebra ofSU, ,, denoted by, 4, is defined by

{X <X11 X12
Slxlp,q = =

X21 X22
={X €51,(C) : JoX"Jo = —X},

whereX11isa(p x p) matrix.

The Lie algebrau, , is a non-compact real form ef, (C). Specifically, ifZ < s, (C),
then(Z — JoZ*Jo) and(—Z — (JoZ*Jo), ¢ = ~/—1, are elements afu, ,, i.e.,Z =
3(Z — ToZ*TJo) + 13(—Z — 1 JoZ* Jo), andsl, (C) = (Z = X +1Y : X, Y € sup 4} and
is the complexification ofu, , [16]. In general, any realization ef,, (C) is isomorphic to
the complexification ofu , .

Let 6 be an involutive mapping afl, (C) onto itself, defined by (X + (Y) = —(X* —
tY*)VX,Y € sup 4. The action ob onsu, , is given by

6(X) b Oy (0 © VX
= (S .
0 -1, 0 -1, “ra

The+1 eigenspace df is given by the subalgebra

X117 O
t={Xx= - €sipg ¢ =5, duy),

and the—1 eigenspace df is given by the vector space

0 X
p:{X:(le 0 )esup,q}.

) € Myxn(C) 1 X = —Xjj, Xip = X21.r(X) =0
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Thus#@ induces the decomposition ef , , given bysu, , = € @ p. The subalgebraand
the subspace satisfy [, €] € &, [ p] < b, [p, p] < & and also, the subalgebtds the
maximal compact subalgebraof, ,.

The decomposition ofu, , induced by is aCartan decompositiarThecompact real
form su,, of si,(C), given bysu, = {X € sl,(C) : X* = —X}, satisfies the properties:
O(sun) C suy, & = supq Nsu,, p = su,q N isu,. The involutive automorphisré is a
Cartan involution This Cartan decomposition of the Lie algelrs, , induces a Cartan
decomposition of the Lie groupy, ,, which is given bySU, , = K exp(p), wherek =
exp(t) = S(U, ® Uy) = SU, ® U1 ® SU, is the maximal compact subgroup$b, , .

The decomposition ofu, , into £ @ p induces the following similar decomposition on
sl,(C). As the complexification ofu , ,,

sly(O)={Z=X+1Y :X,Y €supq4}
={Z=(XE+XP)+L(Y{3—I—Yp)ZXE,YEGE, Xp, Yp € p}
={Z=XC+Y(;XC=XE+[YEEE(:, YCZXp+LYp€pc}

Thatis,sl, (C) = & @ pc, andtc andpc satisfy fc, ] < tc, [€c, pc] < pe, [Pe. bc] € .

Thelwasawa decompositiaf s/, (C) is given bysl, (C) = su, & adn, wherea consists
of those members af,, (C) with real entries on the diagonal and with zeros off the diagonal,
andn consists of those membersddf (C) that have zeros on and below the diagonal.

The Lie algebral, (C) can also be decomposedss(C) = n_ @ hg & n, (triangular
decomposition), where_(n) is the nilpotent Lie algebra of strictly lower (upper) trian-
gular matrices anfy, an abelian Lie algebra of diagonal matrices, Gaatan subalgebra
of s1,(C). That is,

hg = {A =diag[ry, ..., M) A € C, tr(A) = 0}.

TheBorel subalgebra&, which is a solvable subalgebraf (C), is given byb = hg @D n,
and its derived algebra[b] is n,. Any subalgebra of/, (C) containing a Borel subalgebra
is aparabolic subalgebraf si, (C).

3. Root structuresand Cartan subgroups

LetEj, 1 <i, j < ndenote matrix units which afe x n) matrices with 1 at thgth entry
and zero elsewhere. That is, tkieelement ofEjj is given in terms of the Kronecker delta by
Sikdji- Then [Ejj, Ex] = SjkEil — 8 Exj- A basis ofsl, (C) can be given in terms of matrix
units Ej by defining the setEy, Ejj :i # j, i, j=1...,n,k=1,...,n -1 E; =
Exk— Enn, E, = 0}. The set{Ek}Z;i forms a basis of the Cartan subalgebgaf si,, (C).

It will be useful in what follows to consider the following alternative basissfrC). Let,
fori,j=1,...,n,

1n—1 . .
X; =E; - —ZEk, Xij = Ejj, i # J. (3.1)
"=t
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Note thatX; + --- + X, = 0. Clearly, the set of alKj, i # j with any (n — 1) of
the X; forms a basis of/,(C). These basis elements satisfy the commutation relations
[Xij, Xw] = SikXit — & Xij» Xmm= X.

Let us now consider the root structure €f (C) relative to the Cartan subalgeba.
Denote byhy the dual space consisting of é@ltvalued linear forms, on g, such that

ay(A) = Zum)\nu A € bq, (32)
m=1

whereu = (ua, ..., u,) € C".One hasthat_, = —a,. Letg,, denote, for every, < by,
the linear subspace ef,(C) defined byg,, = {Y € s1,(C) : ad(A)Y = «,(A)Y VA €
ba}. Note thatg,, = hq whena,, = 0. Now define the subsét of h7 by
R={a, € bé tay #0, go, # {0}
={a,€bhj:u=0(,...,0,1,0,...,0,-1;,0,...,0),1<i#j<n}, or
{oy €eby:u=(,...,0,-1,0,...,0,1;,0,...,0), 1 <i#j <n}). (3.3)

The setRr is finite and its elements are the non-zero roots ofC) relative tohgy. Thus,R
is called the root system of the paii,, (C), hq). For every rooty,, ge, is of dimension 1.
One has then theot space decompositiaf s/, (C) given by

@
slh(C)=ha® > gu, =ba® Y  (CEj}. (3.4)
oy €ER 1<i,j<n
i#]
Allowing «jj to denote the forn, wherex = (0, ...,0,1;,0,...,0,-1;,0,...,0), one

defineskR™ to be the collectionejj : 1 < i < j < n}. RT is the set of positive roots

of sl,(C) relative tohg, each of which can be written as the sum of fundamental roots
@iiv1, 1 <i <n—1.Clearly,R = RT U (—R"), where—R™ is the collection of all
negative rootsThat is—R™ = {—aj = i : 1 < i < j < n}. Thus each non-trivial
linear subspacgy, is given bygy; = {CEjj}i;. Note also thatfi, Ejj] = (A; — 1) Ejj =

ajj (A Ejj YA € bq.

Aroota; is called compactif, j < pori, j > p, otherwise itis said to be non-compact.
The set of all compact roots is denoted Ry Eachg,; for whichejj € Rc is a subspace of
., and eacrgaij for whichejj € R — Rc is a subspace afc.

As defined in [16], two rootey), Bst € R, 0 <k #1 <n,0 <5 #t < n are said to
bestrongly orthogonaif ayj & Bst ¢ R. LetI';, 0 < j < p be asubset oR™ N (R — R¢)
consisting only ofj strongly orthogonal positive non-compact roafs = ¢). Such a subset
is called a system of strongly orthogonal positive non-compact roots. Two such sygtems
and T, are said to bequivalentf >, . I, RAwg = D ge ri, RAgy,, WhereAy, is the
unique element ity such that the Killing formB(A, Ag,) = 2ntr(AAg,) = ax(A) for
all A € hy. Thatis, A, = diag[Q,...,0,%/2n,0,...,0,-1;/2n,0, ..., 0]. Two such
systems are said to lmenjugateif there exists an elemeni in the Weyl group of the pair
(51, (C), hq) suchthaiv I';, is equivalenttd™;,. Such an elemeni exists whenevef, = j,.
This conjugacy induces an equivalence relation on the set ¢f;ald < j < p. One can



R. Wilson, E. Tanner/Journal of Geometry and Physics 41 (2002) 13-56 19

see that, fop < ¢, there existp + 1) such conjugacy classes, denoted’hy 0 < j < p.
For example, an elemenfs; of fj can be given by, for k< j < p, I'j = {aw : k =
p+l—-m,l=p+m,1<m<j},andlp=0.

We now define subspaces in terms of the eleméhtsf I';. That is, for 1< j < p,
let h‘]’. = ZWGFJR(EO[kI + E_q), WhereEy,, denotingEy, be a subspace ¢f in the
Cartan decomposition i, ;. Clearly, the subspace§ determined by different elements

I'; € T'; form a conjugacy class under the actions of the Weyl grdi(sl, (C), hq). That
is, there exista € W(sl,,(C), hq) such that, for 1< j < p,

Y= > REag+E-u)= Y R(Eay+ E-uy) = w®H?) ZhY.

Olk|€F(j) O{k|€wr(j)

Choosing the elements; as above, the subspadyé]’s 1 < j < pthenconsist ofi x n
matrices of the form

wherery, ..., 7; € R, and, one definels) as a singleton containing the zero matrix. Note
also that the eigenvalues of@d) for any X € h‘/’. are all real.

The abelian subalgebr@%, 0 < j < p are defined by

b’ = (diaghgs. ... 1p—j. 10, ..., 100,100, ..., 10;, Wy j. ..., 1] " i Ok, Yk

ER, g1+ By + 20+ + 0D+ Vg j+ -+ Y1 =0}

J < pis a maximal abelian subalgebrasaf, ,. The subalgebras; and the subspacé

are often called thtoroidal and thevectorparts off) ;, respectively. The real dimension of
h; is (n — 1), which is equal to the rank afs, ,. Also, dim(h; N¢) = (n — j — 1) and
dim(h; Np) = j. The algebrd ; is maximal abelian in the sense that there exists no other
abelian subalgebra eft , , with real dimension greater than the real dimensiolp;,0Each

h; satisfies the property that, for eveky € bh;, ad(X) is a semisimple (diagonalizable)
endomorphism ofu , ,. That is, the subalgebrag areCartan subalgebrasf su, ,. We

say that two Cartan subalgebrﬁ; h’/f are conjugate if their respective vector parts lie
in the same conjugacy class. Equivalently, one may saybtralnd b’j’ are conjugate if

h’j’ = Ad(g)b/j for someg € SU, ,. Thus there existp + 1) conjugacy classes of Cartan
subalgebras fosu , ;. This is an instance of the Kostant-Sugiura Theorem [25,29], which
follows the following theorem.

Note that the eigenvalues of@d) foranyX e h‘j are allimaginary. Each; = h‘j@h‘f, 0<
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Theorem 3.1. There is a one-to-one correspondence between the conjugacy classes of
Cartan subalgebras in a real semisimple Lie algebend the conjugacy classes of strongly
orthogonal systems of positive non-compact roots of the @girhc), wheregc is the
complexification off and b is a Cartan subalgebra afc.

Because any two Cartan subalgebrasipfC) are conjugate under an automorphism
of s1,(C), the complexifications of the Cartan subalgebraswof ,, regardless of their
conjugacy class, fall into the single conjugacy class of Cartan subalgelstagin (which
containshg). Also, whereh? is any Cartan subalgebra gf, (C), the construction of roots
) of (sl,(C), hf/?) exactly parallels the construction given earlier of the ragtsof
(81, (C), hg). In particular, Eg. (3.2) would become

n
oy (X(5)) = D ugpmripm. Xy € b5, (3.5)
m=1
whereuy = (u¢j1, ..., u;u) € C* andr(;,, are the eigenvalues df ;) under some

suitable ordering.

The subgroup 08U, , generated bﬁ; is atoroidal groupdenoted byH]t. = exp(f)‘j),
and the subgroup generated nj}}/is avector groupdenoted byH]‘.’ = exp(b‘jf). In terms
of the toroidal grouijt. and the vector grouﬁlj‘.’ one hasi; = H}’H]‘.. Thus, forp < ¢,
the groupSU, , has(p + 1) conjugacy classes of Cartan subgroups, denotefl Hy0 <
J < p. Thatis, the elements of a clatg are conjugate under an inner automorphism of
ShU,t,,q. One may realize a representative eleménbf the classH; by H; = {h;)} such
thai

coshy; sinht;

coshry sinh#g
hj = .
sinh#;y  coshy

sinhz; coshr;

Iy—j
xdiag[e?, ..., &%r-i: &b, . . . e et . eliieVe-i eV, (3.6)

where ,’l’;{qbn + 22£=19n + Z;{w =0, andt;, ¢n, 0, ¥, € R. Thus after multipli-
cation, one has
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g%
e‘¢177j

+ —

o wp
hijy = S ;

Wy g

- +

@j @j

eVq—j
e

(3.7)

wherewi = %e‘f’k (¢ £ e7"). The matrices:(;) are normal matrices sindg; h(;) =
h(j)h’(“j). The eigenvalues dfjy € H;, 0 < j < p are given as the elements of tixtuple

(hijyts -5 hyn)
= (€%, ..., i i, ... e et eV eV, (3.8)

whe_rezm = O + tm, 1 <m < j. Clearly, the Cartan subgroug; is homeomorphic to
T"—J x R/, whereT™ is anm-dimensional torus.

4. Charactersand density functions

Let H be a Cartan subgroup of a semisimple real Lie gréuand letG., H; denote,
respectively, the complexification 6fandH . Letg, b, gc, andh denote the corresponding
Lie algebras, and lat be a compact real form af;. Also, let H, € ((hc N u) such that
B(X, Hy) = a(X) for all X € h¢, wherea is a root of(gc, hc). Then, with this notation,
one has the following well-known theorem by Weyl [7].

Theorem 4.1. WhereG. is simply connected aridis any linear function ofy¢, there exists
at most one charactdcomplex analytic homomorphidi, of H; such thag, (exp(X)) =
e X X e heifand only if21(H,) /a(H,) is an integer for every roat of (gc, be).

This condition o is equivalent to the condition thatX) € 277, wheneveX satisfies
eX = 1. Clearly, where. is a root of(gc, he), &. is defined. Also, wher® ™ denotes the
set of all positive roots ofgc, hc), ands = %Zae r+o, the characteg;s exists. According
to Harish-Chandra [7]i is said to beacceptabléf & can be defined oi/;. Thus in the
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above case, wher@ is simply connected; is acceptable. Also, a linear functiornabf
hc that is real-valued ob is said to bedominantif 21 (H,)/a(H,) > OVa € R™.

Let us now considesl, (C). Let h‘]? denote the complexification &f;. Becausei,, (C)
is simply connectedSU, , is acceptable. Hence, one may define a roq&dd, ,, H;) as

the charactef(j)au(j) = é(j)a%_) o of H; into C — {0} corresponding to the road, ; of
(s1,(C), h?). Herer is the inclusion mapping fronfl; into its complexiﬁcatiorH]‘? (which

is given by @5), andé(j)au(j) is the character off corresponding ta, . That is, from
Theorem 4.1,
ujy (INCHE;))
Eiangy, (hjy) = € OO Gy = 1) (1)

We consider the following four cases:

1. The set of alpositive rootof (SU, ,, H;) is given by

R(J;.) = {&j 1 1<k <l <n, kidenotesy, . u)
=(0,...,0,1,0,...,0,-1,,0,...,0)},
IR(J;-)I = in(n —1), £Gh) = h(j)kh(_j:;'l, 4.2)
whereh ;) andh ;) are eigenvalues dff; under some suitable ordering.

2. The subset of attompact positive rootsf (SU,, ,, H;), which are necessarily imaginary
(i.e., the corresponding root @s/,, (C), h?) has an imaginary image), is given by

RE =€k EGmn: 1<k <l<p—j l<n<m<gq-—j}
IRl = 3n(n = 1) —pa+ j% — j(n — 1), &Gmhi)
-1 i(d0 v —by -1 i m—Y (i
= hjwh(y = €PDTPDD EGymn(hi)) = hijmh, = &VomVom.
(4.3)
3. The subset of alieal positive rootsof (SU, ,, H;), which are necessarily singular
(non-compact), is given by

RGp=1{6Gwik=p—j+s,l=p+j—s+1 1<s<j}
IREGRI = J. EGathip) = hhy = €0mtiom = im m = 3( —k+1).

(4.4)
4. The subset of alingular imaginary positive rootsf (SU, ,, H;) is given by
Ris=lEgu:l<sk=p—j p+j+l=si=n},
IRGysil = Pa—j(n = ), &Gmthey) = hiph gy, = e@r—von, (4.5)

All the remaining g (n — j — 1) positive roots of(SU,, ,, H;) aresingular complexand
they are given by the elements of the compIemer(IR}f;)C U R(J;)R U R(+j)SI) in R(J“j).
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The Weyl group ofSU, ,, H;) isdefined by (SU, ,, H;) = {c|H; : o € Inn(SU, ,),
o(H;) = H;}, which is isomorphic to the group generated by the elements in the set
Sp—jUS,—;j US; UP()), where

1. §,_; is the symmetric group consisting of all permutations'éf.el <k < p — j.

2. §,_j is the symmetric group consisting of all permutations'éfel <k < ¢ — j.

3. §; is the symmetric group consisting of all permutations of thaairs (%, e~ &), 1<
k < j. That is, the permutation of the paie®, e %) and (e, e %) corresponds to
€ o elande™* « e,

4. P(j) is the power set of the set consisting of theermutations of @ and €%, 1 <
k < j (i.e., the change of sign apin zx = #; + 16y and—z; = —1; + 16;).

Thus, we havgW (SU, ), Hj)| = (p — ! (q — H'j!127. Now, lettinga, ;, = &, where,
for 51, (C),

1 n 1 n
=3 > = EZ(n — 2k + Dey, (4.6)
ij=1 k=1
i<j

we have from Eqgs. (3.2), (3.8), (4.1) and (4.2) that

n
1/2 —2k+1)\1/2
Ejohp) = [ [Egpmtpn™? = [ ]2 )Y
RZ) k=1

pP—J
ne(l/2)¢(,)k(" 2k+1) 1_[ eX/Dz(j)p+1-k (n—2k+1)

k=1 k=p—j+1
pti

x H e=Y/2DZ(jk-p(n—2k+1) l_[ /2% (jnt1-k(n— 2k+1) 4.7)
k=p+1 k=p+j+1

where by the unimodularity conditiohyjy, = (h(j1h(j)2- - h(jn—1)"1, &)s becomes
single-valued. Using this condition explicitly, one obtains

n—1 p+j
‘s(/)S(h(l))_l_[h(j)k — He@(/)i\(n k) 1_[ & p+1-k(1—=k) l_[ e Zk—p(n—k)
k=p—j+1 k=p+1
n—1
1—[ d¥(nt1-k(n—k)
k=p+j+1

Now, following Harish-Chandra [7], one may define thlikensity functionsA for
SU, 4 as
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Ay iy =D [A =€t =TT G —hiw

RF;) 1<k<l<n
1 ... 1
hipr -+ him
2 2
= (-1)W2nr=Dget h(j)l h(])n
n—1 n—1
h(])l o h(])n
on)—1 c(n 1)-1 o(1)-1
—ngr(")hml ()2 ol T (4.8)

oeSy

The valueA ;) (h;) is called theNeyl denominatof30,32].

Theorem 4.2. The density functiona have the following special values

)4
-1 -1
Aprtig) =[] A=gpmngn =[] A=z,
R:;‘)R k=p—j+1
Agsith() = 1‘[<1 E(nkl(h(,)))—l_[ H = hGychpn),
k=1l=p+j+1
(J)Sl
Ay =EGsChin) [ T Q= Epmt))
R
p+Jj
t k
= I ‘g Hh(])k [T @or=how
k=p—j+1 k=1 1<k<I<p—j
< [ Gow=hon T[] Gox—how,
1<k<p—j ptj+lzk<i=n
p+j+1l<i<n
Agyruch(y) =&y sChijy) l_[ (1_‘?(1)"'(}’;/%))
R{RUR )
ptJj p=J .
—1 \n—k -
= I Crowho ™ [Trge T Gow=hon
k=p—j+1 k=1 1<k<p-—j

p—j+1<I<p+j

X [T Gow—row. Ay = A A HRuc
p—j+1<k=<p+j
p—j+2<i<n
where the indicesandv denote toroidal and vector parts, respecti\zeﬂg(r/)I denotes the
set of all imaginary positive roots which, when restrictedHﬁS, vanish identically; and

RG)RUC denotes the set of all real and complex positive roots which do not vaniH}’ on
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Proof. Follows by direct computations from Eqgs. (4.2)—(4.5). O

Theorem 4.3. The density functiond satisfy the following conjugation properties
— RE 1+IRE D4

A, () = (DFOIRGR Ay (hjy) = (~)VDE=DH Ay ().

ApRr(hg)) = A(j)R(hu)i-

Apsithiy) = Apsith ).

7 1/2)n(n—1)+j +J —2(n— —jp=4

A (hiy) = (=HH2ne=bs (l_lfzfj;—j+1(th<j>k) OIS Gy (i
h(pp—ih(hpri+rhipn) "2 7 A ().

SDpmi et Y PP

5. Agruc(h() = (I—If:,]:—,/ﬂ(th(j)k) T B/ - hipyp—jhipyp+jer--

h(ym)? (hjyp—ja1- - hihpe )" ) Aghructh))-

P wbdh P

Proof. Follows by direct computations. a
Let H(/.), H(’J.)R, H(/j)SI’ H(/j)l, andH(/j)RUC be the subsets aff; defined by allz ;)
Hj suchthatA ) (hj)) # 0, Ajrh)) # 0. Agsithgy) # 0, Agy(hy) # 0, and
A¢ructh()) # O, respectively. LeBU, ) = {gH(j)g*l : g € SUpq, hi;) € H{j)),
thenone haSU, , = Uf:OSUM(j). The elements d&U, , are said to beegular elements
in SU, 4. ClearlyH(,, = H; N SU, .. One may also define the regular elementSuf ,
as follows. Consider theharacteristic polynomialsf Ad(g), whereg € SU, ,, det(( +
DI —-Ad(g)) = Zo<k<nz,1Dk(g)tk, wherer is an indeterminatgp? — 1) = dim(Su, ),
and Dy are analytic functions 08U, , with D,>_; = 1. An elementg € SU, , is said
to be regular ifD;(g) # 0 for [ = rankSU, , = rank(su,,) = (n — 1) andsingular
if D;(g) = 0. For the case wheg = hzj) € H(/j) one can show by direct computation
Dy—1(h;) = (—1)(1/2)"(”—1)A(2j)(h’( ) Equivalently, an element € SU, , is regular if
the eigenvalues ¢f are all distinct. Fﬁegular elements®b, , also have the property that
all their principal minors are non-zero. The €4, . of all regular elements d8U, , is
open and dense BU, , and its complement, the set of all singular elementSudf , is of
measure zero with respect to the invariant Haar measus&lgf; [26].
Now, define the mappings ;)r on H; by

j
(R (j)) =SINAR(A()) = sgn| [ [X — e 20

k=1
J J
=sgn| [ [sinhrgy0) | = san| [ Troi | - (4.9)
k=1 k=1
where
1, t >0,
sgnt) =4 -1, <0,

0, t=0.
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Now, wherew € W(SU, 4, H}), andhzj) € H(’j), definee, (w) andeg (w) by

e(HRWN( ;) = eg(w)ehRU ),
e(HRW( ;) A (Wi ;) = erw)e R ) Ag) (h( ) (4.10)

Afunction f; on H; is said to beskew symmetrigsymmetrig undersS,_; and undes, _;,
symmetriqsymmetrig undersS;, and f; is said to beeven(odd) underP(j) if f; satisfies

fitwhgjy) = er(w) fi(hjy)  (fj(whjy) = exw) fih)). (4.11)

: P —1. /
Let us now define [7BU;, , = UJ.:O{gH(’j)g :g€SU,,, hgj) € H(’})}, where

Hy=1hpeHi: [ @=&putg) #0¢,

RGHRURG)CUR s
as the set ofjuasi-regularelements irSU, ,. Then the seSU,Q’q is an open dense subset
of SU, ;, and it is clear that one h&lJ, , C SU, .

5. Invariant differential operators

The groupSU, ,, as a Lie group, can be seen as an analytic manifold of real dimension
2 —1),n = p+gq. Let C*(SU,, 4) denote the space of all infinitely differentiable,
complex-valued functions 08U, ,. The spac& > (SU, ,) is a Fréchet space, and forms
an algebra ove€ with pointwise linear operations. For each compact sukset SU,, ,,
let C¥(SU, ) denote a subspace 6f°(SU, ,) equipped with the topology induced by
C*®(SU, ). CF¥(SY, ) is a closed subspace 6f°(SU, ,), hence a Fréchet space. Let
CZ°(SY, ,) denote the subalgebra 6f*°(SU, ,) consisting of all functions oSy, ,
with compact support. The spacg°(SU, ,) is given theinductive limit topologyof the
space ¥ (SU, ). With this topology onCg°(SU, 4), the continuous linear functionals
on Cg°(SY, ,) are indeed the distributions &, ,. According to a criterion by Peetre
[9,17], a linear transformatio® : CZ°(SU, ,) — CZ°(SU, ,) is said to be a differential
operator onSU, , if it satisfies the condition sugpf) C suppf)Vf € CZ(SU, ).
The differential operatoD on the analytic manifol&U, , is said to be analytic iDf is
analytic at a poink € SU, , wheneverf is analytic atx. Let E(SU, ,) denote the set of
all differential operators o8U, ,. E(SU, ;) forms a subalgebra of Ex@Z°(SU, ,)), the
algebra of endomorphisms 6g°(SU, ). LetD(SU, ,) denote the set of all left-invariant
differential operators o8U, ,. D(SU, ,) forms a subalgebra &(SU, ,). The set of all
bi-invariantdifferential operators 08U, , is the set of all elements &f(SU,, ,) which are
also right-invariant.

A basis ofD(SU, ) can be obtained by introducing one-parameter subgroupblpf .
Let X denote the unique left-invariant vector field®b), , induced byX € su,, , suchthat,
for f € C(SU, ), (X f)(g) = (d/dr) f(x €X)|;=0, x € SU, 4. X defines a left-invariant

differential operator 05U, , which takes the fornk = 222:’11 ar(9/9x;), wherea; €
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C*®(SU, 4 and(xy, ..., x,2_4) are coordinates of € SU, ,. Where{Xy, ..., X,2_4} is

~ &
a basis fowu, 4, the set of monomial'@X'{l . Xn’f:ll : ki € NU{0}}, forms a basis for
D(SU, ¢).

6. Universal enveloping algebra of SU, ,

Recalling thatl, (C) is the complexification ofu, 4, letti(sl, (C)) denote theiniversal
enveloping algebraf su,, ,. This algebra is defined as the factor algetia(C))®/J,,
where(sl, (C))® is the tensor algebra ovet, (C) (considered as a vector space), given by

(&3]
(€N =C® Y sl,(C) ® @ 5ly(C) 1= (s1,(C))§ & (s1,(C))$.
k>1

ktimes

and J, is the two-sided ideal iris, (C))® generated by all tensor elements of the form
XY -Y®X—[X,Y],whereX, Y € sl,(C).

Let, in the following diagramg1 be the canonical injection arg be the natural homo-
morphism

51, (C) 2 51,(C)® B 34(sl, (C)).

The composite mapping = o2 o o1 is a Lie homomorphism af,, (C) into $i(sl, (C)), i.e.,
forall X,Y € sl,(C) one hasr ([ X, Y]) = 0 (X))o (Y) — o (Y)o (X), Whereo (X)o (Y) =
(X®Y)+ J, =020X ®Y). The algebral(s/, (C)) overC is an associative algebra with
respect to the usual coset multiplication. One can show that the canonical mapjsng
injective and hence one may identify every elementipfC) (and consequently every
element ofsu, ,) with its canonical image ii(s, (C)).

Let{Xy,..., X,2_,} be a basis 0§/, (C). The elements of this basis satisty;[ X ;] =

Zzzz‘llci’j Xk, whereci’j € R are thestructure constantdn terms of this basis, a basis of
(s1,(C))® is given by

(L.X, ® - ®X;, :1<i1,....ix <n®—1, ke N}
The Poincaré—Birkhoff—Witt basisf L(sl,, (C)) is given by

{e(X)) - (0(X,2_1) 21 1k e NU {0}, (6.1)
whereo (X;) = X; 4 J, and satisfiesd (X;), o (X ;)] = Zi‘llcfj?o(xk). Clearly, with this
basis foril(sl,(C)) and the basis fdD(SU, ,) (see Section 5), the isomorphism

U(sl, (C)) = D(SU, 4) (6.2)

can be immediately seen.

Now, consider a point in SU, ,, and letX e (sl,(C)). One can show that i f (x) =
0 forall f € CZ°(SU, ), thenX = 0. Furthermore, it is known that ib is a differen-
tial operator onSU, ,, then there exists exactly one eleméht € (sl,(C)) such that
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OHx) = (X Hx)Vf € CE(SU, ). Such an elemeri, is called thdocal expression
of D atx [7].
Let 3 denote the center af(sl,, (C)). By the isomorphism (6.2), one has

3= Z(D(SU, ), (6.3)
where
3={Xelsl,(C)) :[X,X] =0VX € sup,4)}. (6.4)

7. The Harish-Chandra homomorphisms

Let h?, j =0,..., pdenote the complexification of the Cartan subalgébraf su, ,.
Letu(b‘]’.) denote the universal enveloping algebra generated by l;jar@iearlyu(b‘j?) is
a subalgebra dil(sl,,(C)). Because eadlj\? is a conjugate form of the Cartan subalgeliya
of s1,,(C), the(p +1) enveloping aIgebr&:s(bj) are also conjugate td(hq). Consequently,
one considers only(hq). A basis ofil(hg) is given by

{(c(X))M - (0(X, )" ki e NU{0}}, (7.1)

where{X1, ..., X,; X1+---+ X,, = 0} is a basis ofjg. The Poincaré—Birkhoff-Witt basis
for U(sl, (C)) can be given by the set of monomials, gt rx, pr € N U {0},

n

[] @E- )™ JeXip™ [] (@ Eq™ (7.2)

areRT k=1 areRT

which follows from the triangular decompositieh, (C). Sincebgq is abelian ti(hq) coin-
cides with the symmetric algeb@(hq) = (hq)®/Js, WhereJs is a two-sided ideal with
elements oftheformY ® Y — Y ® X VX, Y € bq.

Leto : s,(C) — U(sl,(C)) be the Lie homomorphism, and let : s/,(C) —
&(sl,(C)) be the canonical mapping. Then, on viewing these algebras as vector spaces, there
exists a unique linear isomorphism, callegmmetrizationdefined byx : &(sl,(C)) —

(sl (C)), such that = A oos. It can be shown [15,17] that the image of the(&8d, (C))-
invariant subset o6 (sl,, (C)) under the symmetrization mappinds equal to the centey.
In terms of the basis (7.2), one has the decomposition

U(s1,(C)) = U(ha) ® [0 () U(sl, (C)) + (sl (C))a (n )], (7.3)

which gives raise to the following two conditions:

U(ha) N Y U(sly(C))o (Eq) = {0}, (7.42)
aeRT
3CUba) @ Y U6l (C))o(Eq). (7.4b)

a€RT
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Let y’ be the projection of((hg) ® >, g+ (s, (C))o (Ey) onto thetl(hy) component.
Clearly, one can see that

a€RT

y' ( > sty (C))o(Ea)) ={0}. (7.5)

The mapping/’ is an algebra homomorphism®into i(hq) [5]. Following Harish-Chandra
[7], we definen € Aut(ii(hq)) such that)(1) = 1 and forXq, X2 € by,

n(01(X1) ® 01(X2) + Js) = (01(X1) ® 01(X2) + §(X1)01(X2)
+8(X2)01(X1) +8(X1)8(X2)) + Js, and
n(1+Js) = 1+ Jy).

This reduces, whei; = X, X, = 0, ton(o1(X) + Js) = (61(X) — §(X)) + Js, wheres
is given by (4.6) §(X) € C). One can see from the definition pf and the definition ofj,
thatn is multiplicative on the centej. Now define the mapping = noy’ : 3 — U(bhg).

Lemma7.1. y; € Hom(3,ﬂ(h§))Vj =0,1,...,p.
Proof. Forj1, 32 € 3, the element

3132 — ¥ GOV G2) = 51G2 — ¥/ (62) + ¥ (62)G1 — ¥’ (G1)

isin) ", cr+i(sl,(C))o (Ey). Hence from (7.5), one has(3132) — ¥’ (31) v’ (32) = 0. That
is, ¥ (3132) = ¥'(31)y'(32), and thusy’ is multiplicative on3. Sincen is multiplicative
one finds thay also multiplicative. As the composition of two algebraic homomorphisms
the mappingy is also an algebraic homomorphism, and is called Hlagish-Chandra
homomorphism a

An elementx € $(hq) is invariant under the Weyl grouy (si,,(C), hq) if X = wXw 1!
forall w € W(sl,(C), hg). The set of all Weyl invariant elements form a subalgelifg)
of 4(hg). One can prove [18] that Ity) € J(hHg) and that the mapping : 3 — J(hq) is
bijective. Thus one hag + 1) number of isomorphismg; : 3 — J(hﬁ).

Now, lett € Aut(sl,(C)) be defined such that(l) = 1 andr(h?) = h?. That is,
h‘l? is t-invariant. Sinceyp € Aut(t(hq)) and since, as pointed out in Section 3, the root
system of(sl,, (C), hg) parallels that ofs/, (C), bjﬁ), one finds that the compositiano
is commutative. From the definitions gf andy; and by using the-invariance of) and
the isomorphisn® — J(hS) it can be shown that, fof € 3, yj/.(rg,r‘l) = tyj/.(g,)r—l,
implying thatyj(rgt_l) =TYj )L

Because the rank &U, , is equal to(n — 1), the centep is generated byn — 1) basis
elements. These basis elements can be chosen to be polynomials in the basis elements of
sup 4. Thesgn—1) elements are called ti@asimir elementglenoted b, k = 2,...,n.
Writing the set of basis elementsof, ; as{Xi : 1 <i, k <n, X114+ --- + Xnn = 0},
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the Casimir elements may be defined as

n Kk—1
@ = Z <1_[G(Xikik+1)> 0 (Xiip), (7.6)

i1,emic=1 \k=1

satisfying ., Xx] =0, i,k = 1, ..., n. To determine the action of the projectipfhion
¢, one expands ead), and uses the commutation relations to move allXhe i < k,
toward the right. That is, writing, in the formil(hq) ® Za€R+ U(sl, (C))o (Ey). Then,

by (7.5), the resulting expressions become polynomials in ngw X, k=1,...,n,
which are the elements 0f(hq). That is,

k=1 n

v (@) Z(o(x N+ DY an(e (X)),

k=11=1

whereay € Q can be uniquely determined by the commutation relationX;gn

In order to determine the action of the Harish-Chandra isomorppisem o v/, one also
needs to know the action gf which requires the action éf § is one-half of the sum of all
positive roots of(sl, (C), hq) and is given by (4.6). That is(Xx) = 3(n — 2k + 1). The
action of the automorphismono (X)) is now given by (o (X)) = o (X)) — %(n —2k+1).
Hence the action of the Harish-Chandra isomorphjson €, is given by

n K k—1n k
y(E€)=>" [a(xk) - —(n — 2+ 1)} + YD an |:0(X1) — —(n — 2+ 1)}
k=1 k=1[=1

(7.7)

Let, as in Section 4H(;) = H; N SU, , denote the set of regular elementsHn. H(,
may be seen as an open submanlfolch;, ¢- A measure on a manifold [26] is said to
be equivalent to Lebesgue measufr®n each coordinate neighborhood, it is a multiple
of Lebesgue measure by a nowhere vanishifig function. Then, one has the following
special cases of the theorems from [9,15].

Theorem 7.2 (Harish-Chandra [5-14])Wherer is a projection of S|} , onto H/ and
wheredu(g) anddu(hj)) are equivalent to Lebesgue measures on, sénd H, (]),
spectively, then there exists a unique functfgne C°(H, ])) for eacha € C“(SUP,Q)
such that

[ Fom@adue = [ Fhp) i duthiy VF € CE ).
SUpg Hy;,

Furthermore o +— f, is a continuous mapping af°(SU, ,) onto C‘X’(H(])) and
SUp[ fo) € m(suppa)).

Theorem 7.3 (Helgason [15-18])If D is a differential operator on S}J,, then there
exists a unique differential operatat(D) on H( "y called the radial part of D, such that

(Df)|H(/j) = A(D)f|H(/j) for each locally invariantC function f on SUJ ,.
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From the above two theorems, one obtains the following expression for the radial part of
the differential operatoy € 3 in terms ofy (3) € J(hq):

GOy, (hN=((Aj ) Ty () o Ao flay, By ki € Hp, o (7.8)

whereo denotes composition of differential operators, andh ;)) is the density function
given in (4.8). The composite operator

(AG ) y G) 0 AGy(h(jy) (7.9

is well defined and is the radial part pbn H(/j).

One can express every differential operat®) € J(hq) interms of differential operators
h(@/9h ;i) (see (3.8)). These differential operators are given by

1 9
= i k=1..., P—J
L 3(jk
3 1 ] 19
0z(ip—k+1 2 \0l(jp—kt+1 L 06(j)prt1
Pk oGy ) 1 ) 1 9 (7.10)
’ —— =-(- + —- ) k=p+1,..., p+J
OZGk—p 2 < Otijyke—p L 90(k—p
1 3
BT E— k=p+j+1,..., p+qg=n
LY (jn—k+1

The set of these operators forms a basis¥dry). As we see in Section 8, for a given
representation U, ,, the eigenvalues of these basis elements are given by the parameters
uiy = (UG, - -, ucn)- Then-tupleu ;) is thehighest weighof the representation of
SU, 4 induced byH;.

8. Character groups and representation parameters

Thecharacter groupof the dense subséi(’j), 0 < j < p of the Cartan subgroufd; is
given by the set of mapping'@j)auj € Hom(H(/j), C). We denote this group bH(/;‘) From
(3.5) and (3.8), one obtains fay;) € H(/j),

n
Ean, (1) = EGran, [@iaGI L. -- s hja]) = [ [0 o
k=1

= &(jya,, (diag[e?, ... i€, . el e, L e el L e))

p—J P ptj .
— n(ettbk)u(j)k l_[ (EFp—k+1)H(k H (7 %=r )Gk
k=1 k=p—j+1 k=p+1

n

% 1_[ (e”pn—kJrl)”(j)k

k=p+j+1



32 R. Wilson, E. Tanner/Journal of Geometry and Physics 41 (2002) 13-56
whereuy € Zforl <k < p—jandp+j+1 <k < n, andugy € C for

p—j+1=<k < p+j Then-tuple (g, ..., ug )y is called thesignatureof the
characteg Dot Clearly one has that

0
hipk g8, | i) = uprdiran; (hij)- (8.1)
Ohgj Y
AcharacteE(j)auj € H_}, isregularsince, for every non-unit elemeate W(SU, 4, H;),

w(oy) # ay.
By using the unimodularity condition given ), = (h(j1h(y2- - hjn—-1) "1, i.e.,

p—J J q-J
Yi=—Y d—2) Y Vi
k=1 k=1 k=2

one obtains, for ;) = u¢k — ugjn,

pZJ p ptj
ul ., -~ ul . .
Eya; (h(j) = l_[(e“”k) Pk 1_[ (€9 r—k+1) 1k 1_[ (& =) ik
k=1 k=p—j+1 k=p+1
n—1 ,
% l_[ (EVn—k+1) Gk
k=p+j+1

In fact, there are

(3

ways in which one can introduce the unimodularity condition.

It is known that the representations 8, , induced by the Cartan subgroups are
parameterized by the signatures of the characters in the respective characterfqgfgups
Choosing any of the

(1)

ways to introduce the unimodularity condition will result in equivalent representations. For
unitary representations &U, ,, one may choose the parameterization

Wy = Uik — U(j)n
M(jyks l<k=<p-j,
_ ] oow =200+ rgw), p—j+l=<k=p, ©.2)
Ok ‘= %()»<j)2p—k+1 —urGyzp—k+1)s P+1=<k=<p+}, .
mj)k, p+j+1l<k=<n-1
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Consequently, one has

p—J p A
) e<p—k+1 )k )
e, (hij)) = [ [e?)mox [ < > e

palie} kmp_ji1 |€p—k+1]
n—1
x l_[ (e”pn—kJrl)m(j)k i (8.3)
k=p+j+1

Wherem(j)k €7, )\(j)k» r(jhk € R, and g/ m+ur) g=2(1/2(m—ur) — (e¢/1ef)™ €5 For
irreducible unitary representations 8tJ, ,, one has the Weyl condition [30§z(;)1 >
Mmyz Z o ZM(jp—j Z Mptjtl Z Mptjr2 Z w00 Z M(jn-1-

Harish-Chandra [11,12] proved that a semisimple Lie group has a discrete series of
representations if and only if its rank is equal to the rank of its maximal compact subgroup
or, equivalently, if and only if it has a compact Cartan subgroup. The g&lp, has
one compact Cartan subgroifp C K = S(U(p) ® U(q)). Also, the rank ofSU, , =
(n — 1) = rank(K), henceSU, , has a discrete series of representations.

Let R(+O)c be a fixed system of compact positive roots given by (4.3). There exist exactly

()

systems of positive roots, denoted by

R, 15k§<n>,
P

containingRﬁB)c. These systems are given By = wyR (g, whereR; is given by (4.2)

and the Weyl reflections, € W (sl,,(C)) are products of transpositions= (i,i +1), i =
1, ..., p. This means that there are

(3)
p
non-equivalent discrete representationsStl, ,. For each of the
(5)
p

systems of positive rootg;" containingRjo)C, one can compute

Since each Weyl reflectiosy changes a non-compact negative root into a non-compact
positive root, one may easily compuig for eachk. For example, whem; = I and
wp = s, One obtains, wherg — p =n — 2p,
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81=%(n—l,n—&...,q—p—i—l,q—p—l,q—p—3,...,—n+3,—n+1),
82=%(n—l,n—3,...,q—p—l,q—p—l—l,q—p—3,...,—n~|—3,—n+l).

The onlyholomorphicdiscrete series representationsSad, ,, p < ¢, is obtained from
81. However, wherp = ¢, there exists a system of positive roos}, in which all p?
non-compact negative roots enter as positive roots. In this case, one obtains

$1=3(n—-1n-3,....31-1,-3,...,—n+3,-n+1),
8a=3%(-1-3,...,-n+3, -n+Ln-1n-3..,31.

Here, the only holomorphic series representations is obtained&tpand the onlyanti-
holomorphicseries representations is obtained fré§m
One can introduce, for discrete series of representations, a different set of parame-

ters, calledHarish-Chandra parameterg = (¢4, ..., ¢,), or Blattner parameters =
(b1, ..., b,). These parameters are relatechby ¢ — 26¢ + 8;, wherese = %Zae%) o=

c
3(p—1p-3,...,—p+1g—14-3,...,—q+1). However, in the discussion which

follows the parameters: )« };_;, as given in (8.2), are used since it is possible to use them
generally for both discrete and continuous series of representati@ts, of.

9. Gérding space and representations of the Liealgebra su, 4

Let(p;, H ;) denote the representation®if, , induced by the Cartan subgroufig, j =
0,1,...,p. Thatis,p; € Hom(SU, ,, Aut(#)). Garding [3] showed that every group
representationip, #) defines a representation of its corresponding Lie algebra on a dense
subspace oH. LetG; be a vector subspace #f; spanned by all vectors of the form

L L @i dule) = v, 9.1)

where di(g) isthe left-invariant Haar measure [26]80), 4, ¥ € Hjandf € C°(SU, ).
The spacg; is called theGarding subspacef #; (or Garding domaii with respect to
the group representatiqn. For everyX e su, , one defines a linear operaty(X) of G;

into itself such that
TCOEIAR
— lim <M> Vs teR (9.2)
=0 —0

° d X ©
0j(X)Y = a(pj(e W) ;

One calls the paifo;, G;), thederivedor differentiatedrepresentation of the grolgi, ,.
If go € SU, 4, then

pj(go)@f=pj(go)/ f(@pj@)W) du(g)=/ f(@)p;(gog)(¥)du(g)
SU, 4 SUpq
=/ f(galz)pj(z)(llf)du(z)=/ frgO(Z)ﬂj(Z)(l/f)dll(Z)leffgo,
SUp., SU.,

(9.3)

wherert,, is the left translation. One can easily prove [3] the following theorem.



R. Wilson, E. Tanner/Journal of Geometry and Physics 41 (2002) 13-56 35

Theorem 9.1. Let(p;, H;) be a representation of SLJ,. Then

1. The Garding spac§; is dense ir#;.
2. The Géarding spac§; is stable undep ; (X), where X s the generator of a one-parameter
subgroup of SY ,.

3. The pair(g;, G;) with Q./‘(X);bf = 17/5(”.) VX € sup 4 is arepresentation ofu, ;.
4. The operatorsg;(X), 1 = /=1, X € su, , are symmetric

Remark.

1. Sincej; is aninvariant subspace, one can define the action of any eléinel(s/, (C))

by o; (36)1/0/f = ‘Zi(f)’ whereX is theleft differential operator orC°(SUY, ,) corre-
sponding to the elemedt. Hence, the representatiqn;, G;) can be uniquely extended
to a representation af(s/, (C)).

2. One may use, instead of the Garding don@jnthe space ofvell-behaved vectors
(analytic vector} [23], dense inH;, which was introduced by Harish-Chandra. An
elementy € H; is said to be well-behaved undgy if the mappingg — p;(g)¥
is an analytic mapping 08U, , onto #;. The use of this space resolves the lack of
SU, ,-invariance of the Garding domain under the unique extension of the representation
(0, G;) to arepresentation éf(sl, (C)). Denoting the analytic vector space dy, this
unique extension to a representatioriig$/, (C)) will be denoted by(o;, A;).

10. Invariant eigendistributionson SU, ,

Let, as beforez(SU, ,) denote the center d8U, , and 3 denote the center of the
universal enveloping algebt(si, (C)). The representatiofp;, H ;) is aquasi-simpleep-
resentation oBU, , ifthere existy € Hom(Z(SU, ,), C—{0}), called thecentral character
of (pj, H;), andx € Hom(3, C), called thenfinitesimal characteof (p;, H;), such that
the following two conditions hold:

Qj(z,)xoﬁf=xw,-(3)$f, 3 €3, xobfegj, (10.1)

wherew; is the equivalence class containing the representagont{ ;) of SU, ,. For
¥ € Hj, one haw;(3)¥ = xo; 3)¥. Itis well known [24] that any irreducible unitary
representation is quasi-simple.

A linear operatorA on the Hilbert spacé{ is said to be of trace class if for every
bounded linear operata® with a bounded linear inversg, | (v, B~1ABY;)| < oo for
every orthonormal basig/y, ..., ¥, ...}. The sumd_(y;, B~1ABy;) is independent of
both{y;} and B, and is called the trace of. A is said to be of thédilbert—Schmidt class
if AA* has a traceA™ being theformal adjointof A.

Let (p;, H;) be an irreducible unitary representationSif, , on a Hilbert spacé{ ;.
Then for anyf € C°(SU, ) satisfyingfsup,q | £(g)1%2du(g) < oo, where qu(g) is the
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Haar measure 08U, , the bounded linear operatpr; ) = fsu .S ®pj) du(g) on

‘H; has atrace and is of the Hilbert—-Schmidt class [6]. Ddie the space of all operators
of the formp; ). Then, forgo € SU, 4,

pi (8001 = fs | T (508) dias) = /S | 15 006 duto).

ando;(1)0(87) = Jsy,, [ (@)p;(8) du(g)- Thatis,p;(s0)p; ) andpjs)p;(sy ™) are
in D for eachgo € SU, ,. Define the linear functiondl;,,j onCge(Sy, ), called theglobal
character(or distributional charactey of (o, H;), by

T, (f) =t(pjr) = Z/ f(g)(p/(g)(llfz) Vi) du(g),  pj € wj, (10.2)

i>1

where{y;};>1 is an orthonormal basis 6f;. One can see that this global charadgy
does not vary within an equivalence class of representatioBslpf,. Where(p;, ;) and
(p}, 7—[’].), are two equivalent representationsstd, ., there exists an isometry from H ;

onto#; such thap; (g) = A*lp} (8§)AVg € SU, ,. Thus

Pif) = f(@)pj(g)du(g) = F@AT (e Adu(g) = A7) 4 A.
SU, 4 SUpq J J(f

Taking the trace on both sides, one fs(f) = Tp} s pj, p’l. € ;. One finds [10] that
Ty, is a distribution in the sense of Laurent Schwartz.

Lemma10.1. 7, is conjugation-invariant (central) under i) .

Proof. Let f, f' € CZ°(SU, ,) such that, given o € SU, ,, f'(g) = f(gogggl) Vg €
SU, 4. Then

Pi(f) = / 1 (@pj(g)du(g) = / f (20990, (g) du(g)
SUp,q SUp,q
=/ F(@)pj(gy09m) di(g) = pj(ggHpj(rpj(80)-

Taking the trace on both sides, one igs(f") = T, (f)- O

Now, by definition, theformal transposeP!(g, (3/dg)) of a differential operator

P(g, (3/g)) on SU, 4 satisfies(P (g, (3/98), ¢) = (¥, P'(g, (3/0g))$), wherey €
C*(SU,,g) andeg € C(SU, ) (oryr € C°(SU, ) andg € C*(SU, 4)). That s,

0 0
f (P (g, —) w) (2)¢(g) du(g) = ¥ (g) (P‘ (g, —) ¢) (&) du(g).
SUp., ag SU,., g

For example, the transposedfg is —d/dg. If 7,,; is a distribution of the formyr (g) dy.(g)
(Radon measure) then one has thag, (8/8g))Tw] would be(P (g, (3/9g))¥)(g) du(g).
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Thus motivated by the invariance property of differential operators (see Section 5) one
definesP (g, (0/0g) T, t0 be the distribution given by

9 9
<P <g, @) ij) (@) =T, (Pt <g, @) ¢) . ¢ €CP(SU,,). (10.3)

Lemmal0.2. LetX be aleft-invariantvector field on SLJ,. Then, as a differential operator
X' = -X.

Proof. Lety € C*(SU, ,)andp € C°(SU, 4) (oryr € C°(SU, 4) andp € C*(SU, 4)).
Then

- d
/ Xy (9o (g)du(g) = / E[lﬁ(g eX)]i—0¢ (2) dp(g)

UPJ[ P.q

d
g [ / V(g ) (g) du(g)]
t SUp,q =0

d
-2 [ / V(@)dge™) du«(g)}
1] /sy,

_ / () (=X ) (9) dug).
SUp.q

t=0

Hence from the definition, it follows thaf’ = —X. 0

Lemma 10.3. Let(p;, H;) be an irreducible unitary representation of $i). Then every
matrix coefficient op; of the formg — (p;(g)¥1, ¥2) transforms under a left-invariant

vector fieldX, X € 4(sl,(C)) as
(0 (V1. ¥2) = (pj(£)0; (X)W1, ¥2), g€ SUyy, V1,2 € H;.

Proof. Let X be a left-invariant vector field induced B € sup 4. Then by the definition
of X one has

¥ d X d X
X(pj (&)Y, ¥2) = E[(pj(ge W1, ¥2)]i=0 = a[(ﬂj(g)pj(e W1, ¥2)]i=0

d
= 31} €91, 0] (¥2)li=0 = (; XV, 0} () ¥2)
= (pj(9)oj(X)V¥1, ¥2).

If one iterates this equality then one has, for aye U(sl, (C)), 5€(pj(g)1/f1, Yo) =
(0j(@)oj(X)V¥r1, ¥r2). U

Proposition 10.4. LetT,,; be the global character of an irreducible unitary representation
(0j, H;) of SU, ,. Let; e 3, the center okl(sl, (C)). If ; is considered as a left-invariant
differential operator, thepT,,; = xw; (3)Tw;, implying that7,,; is an invariant eigendistri-
bution for3 on Sy, ,.
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Proof. From (10.3), we hav&sT,,,)(f) = T, ' f), f € C&L(SU, ). Let{¢;}i>1 be an
orthonormal basis off ;. Then one has

jG nis> ¥i)

= ( fs ! G' H(pje) du(g)xbi,wk) = / (G' NH(@pj (Vi Y) du(g)
P.q

Upg

=/ (pj(g)wlnWk)(sz)(g)du(g)=/ 3(0j (@) Vi, Yi) f(g) di(g)

Up,q SUp,

- / (9; ()0} G V) () di(g) = / (95(®) Koy DV, Y0 £ (2) e (9)

UI’«‘I UPJ]

= Xo; (3) /SU F (@i @)Vi, ¥i) di(8) = Xw; 3 (j(r) Vi Vi)

Taking the trace on both sides, one ﬁa§(3’f) = Xo; 3 Tw; (f) = GTw,)(f)- O

Any distribution which satisfies the above proposition is said to beigandistribu-
tion of 3 on SU, ,. Also, a distributionT on SU, , is said to be3-finite if the space
spanned by;37,,,) is finite-dimensional. By the above proposition, one has Thatis an
eigendistribution of3. Because,,; is conjugate-invariant und&U, 4, T,,; is aninvari-
ant eigendistributiorof 3 on SU, ,. Also, since the centéj is finite-dimensional7,,; is
3-finite.

A complex-valued function on an open subgebf SU, ,, is locally summablglocally
integrablg if it is summable on every compact subsetioivith respect to the Haar measure
of SU, 4. According to Harish-Chandrategularity theorenf10], an invariant eigendistri-
bution is represented by a local§* function on a connected reductive group. In terms of
SU, , this theorem may be stated as follows.

Theorem 10.5 (Harish-Chandra [5-14])There exists a locally summable functigp, on
SU, 4 which is analytic on S%q such that the invariant eigendistributidh,; is given

by 7o, (f) = fsy,, F(@ Fu; (@) diu(@ ¥f € CF(SU,). The functionF,, is uniquely
determined on Syq by these properties

By definition, the global charactdl,; is given by, for allf € CZ°(SU, ,) and for an
orthonormal basi$y; };>1 of H;,
Ty, (f) =t (pj) = Z/su F (@) (pj (@i, ¥i) du(g).
P.q

i>1

Hence in view of Theorem 10.5, it seems reasonable to Fakeg) as

Fo;(9) =) _(0j(@)Vi, ¥i) Vg € SUy,. (10.4)

i>1
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Proposition 10.6. The locally summable functiofi,; on SU, , is an invariant eigendis-
tribution of 3 on SU, ,. That is (Fw;) (@) = Xw;(3) Fu; (8) Vg € SUp 4.

Proof. Theinvariance follows fromthe conjugation invariance of the tra¢g afe) v;, V)
underSU, ,. That it is an eigendistribution can be seen as follows. From Proposition 10.4,
GTw) () = Xw; 3T, (f)Vf € CZ(SU, 4). Now, from Theorem 10.5,

GTo)(f) = Ty G f) = / G (@) Fay (9) dua(g) = f £(@)GF))() du(g).

Up,q SU]},q
andta, To; (=X, ) fou, , £ (&) Fo; (&) dia(). HENCEGFo) ) ()=xo; (3) Fury (). T

The uniqueness of this invariant eigendistributiQy) is given by the following theorem

[5].

Theorem 10.7 (Harish-Chandra [5-14])Given an elemerﬁ(j)aui € H(/j) which corre-
sponds to a given representation;, H ) € w; there exists exactly one invariant eigendis-
tribution F,,; of 3 on SY, ;. This distribution has the following properties

1. Where the analytic function®,_1(g) on SU, , is as defined in Sectiof, sup.sy

P.q
|Dp—1(8)1M2| Fo, (8)] < 00.

2. For h(j) € H(/j)’

Fo,(h(y) = (A > SIMw)E(j)a, (Whj))-

weW (SUpq,H{;)

Now, from (7.8) and Proposition 10.6, one has, /gy € H(’j),

(AGy(h)) v G) o Ay (h(p)) Fo; (hij)) = Xw;(3) Fo,; (hj))-
In other words,

Y @) (AG) (h(jy) Fo)(hij)) = Xo; B AG) (h(j)) Fo; (hj)),
wherey is the Harish-Chandra homomorphism. Let

Zj(hj)) = €pr) Ay (hj)) Fo,; (h(j), (10.5)

/

whereej)r(h(j)) is as defined in (4.9). Then from Theorem 10.7,/fpf € H(,,

Ejthg) = erhG) Y SAIWEGa,, (i) (10.6)
weW (SUp.q,H ;)

Using (4.10), one hEE‘{j)R(wh(j))A(j)(wh(j)) = er(w)e)RH) A (h(jH)- Then

Ej(whj)) = eg(w) & (hj)),
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and by (4.10)=Z; is skew symmetric under the symmetric groups ; andS,_;, sym-
metric underS;, and even undd?(j). Furthermore, from (10.5) and Proposition 10.6, one
obtains

Y@ Ej(hj) = Xo; D Ej(h()),  hgy € Hf;y. (10.7)

Using (8.1) and (10.6), one obtains

n

ad
| | (h(j)k— — Lt(j)k) Ej(h(j)) =0. (10.8)
i1 Ohiji

Solving for Z; (h(j), one obtains a general solution

n
Ejth) = Y Polhgyns s hipn) [ [ “ow,
oes, k=1

wherep, (- - - ) denotes a polynomial in the respective argunient).
The invariant eigendistributiod,,, of 3 on SU, , is also an eigendistribution of the
centerZ(SU, ,) of SU, , since from (10.1) and (10.4),

ij (92 = Z(pj(gz)'(//is Vi) = %,—(Z)Fw_,(g) Vg e SUp,qv z € Z(Sup,q)-

i>1

As in Section 2, the center &U, , is given byZ(SU, ;) = {91, : g0 = & F/Mk |k ¢

Z}. Since, forp € Z(SU, 4), nw; (9) = pg'» m € Z one hask,; (gp) = o Fu,;(8) Vg €
SU, 4. Furthermoref,,; can be extended to the eigendistributiéy, onU), ,, wherew;
denotes the class of unitary representation& gf, which contains the unitary represen-
tations induced by the unitary representation$0f, , in the classw;. If { e T = {z €

C : |z| = 1}, then the mapping;, g) — g¢ mapsT x SU, , onto U, ,. Thus by using
(10.1) and (10.4), one obtains fo, 4, g € SU, 4, Fir;(8¢) = {™ Fy,;(g). All invariant
eigendistributions osU, , which are also global characters of a quasi-simple irreducible
representationo;, ;) of SU, , (or U, ,) fulfills the above condition for some. That is,

one has the following lemma.

Lemma 10.8. If p € Z(SU, ), fp, € C(SU, ,) such thatf(gp 1) = fo(@) Vg €
SUy.q. thenpl! T, (f) = Ta, (fp).

Proof. We have

@?ij(f)=/ f(g)@(')"ij(g)du(g)=f F(@)Fo;(ge) du(g)
SUp 4 SUp 4

= fgp HF,,(9)du(g) = / To(8) Fo; (g) du(g)
SUp 4 SUp.q
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Remark. However, there may also exist invariant eigendistributionssth ,, for cer-

tain choices ofp andg, which do not satisfy the above condition for any An example

of such a distribution foSU(1, 1) can be found as a linear combination of the charac-
ters of two non-equivalent irreducible unitary representations with the same infinitesimal
charactety.

Proposition 10.9. Foreveryf e CZ°(SU, ,) there exist functiong,, € C°(SU, 4), m €
Z such thatf,, (ge) = g f(g) forall p € Z(SU,4), g € SU, 4, and such that f can
be uniquely expressed &= fo+ - -- + fy—1. The mappingf — f,, is continuous with
respect to the usual topology 6£°(SU, ;).

Proof. Let oy, : C(SU, ) — C(SU, ,) be the mapping defined by, )(g) =
f(gp), wherep € Z(SU, 4), g € SU, 4, f € CZ(SU, ). Then, sincgog = 1, one has
thatag) =1 = ag10p = @po, where/ is identity mapping orCg°(SU, ,). Hence,
since for non-identityp € Z(SU, ,), the set

{500 — 6/')”: 5017 ”"pn—l}

forms the set ofith roots of identity, one obtaing, — I = ]_[’,z:(l)(% — i) = 0. After
taking the derivative with respect g, one has

n—1n-1
Z 1_[ (ot — 50161) = nag_l = no,-1.
m=0 k=0
k#m
In other words, one finds thg" 4 F, = I, whereF,, := (1/n)ozp]_[',z;(l)’ kot (Qp —

©81), such thatlay, — §)Fn = 0. Thatis,ap Fy = o Fu. Let f,, i= F, f. Then
oy fm = ©4 fm- SinceFy + --- + F,_1 = I, one obtainsfo + --- + f,—1 = f, which
is the desired decomposition. The decomposition is unique as it depends onlygipon
-+« + F,_1 = I. The mappingf — fn = F, f is clearly continuous by the continuity
of f onSU, , and hence the continuity df,,. Furthermore f,,(gp) = (ap fin)(g) =

" fin(8)- O

Proposition 10.10. For every distribution F on S}, there exist distributions,,,, m € Z
on Sy, , such thatF, (gp) = gy " Fu(g) forall g € SU, 4, o € 2(SU, ), and such
that F can be uniquely expressed Bs= Fy + --- + F,_1. Where F is an invariant
eigendistribution, allF,,, are also invariant eigendistributions

Proof. Let F be a distribution or8U,, ,. Let F;,,, m = 0, ..., n — 1 be distributions on
SU, 4 satisfying, where € SU, ,, f € CZ(SU, ),

/ f(g)Fm(g)du(g)=/ fm(@)F(g)du(g).
SUp,q SU[,,q
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Summing overn and usingfo + - - - + f,—1 = f, one obtains the unique decomposition
Fo+---+ F,_1 = F. Furthermore,

/ f(@)Fn(g)du(g)

SUpq
= / fm (@) F(g) du(g)
SU, 4

= / fm(ge)F(ggp) du(g) = g / fm(8)F(ge) du(g)
SUy 4 SUp.q

= 506"/ (ap-11)(gp) F(gep) diu(g)

U[’~‘I

0 /S (@p-1f)gpF(ge) du(g) = og' / (ap-11)(g8) Fin(gg) du(g)

P:q P-4

= 50’61/ F (@) Fn(ge) du(g).
SUp.q

Hence gy,  f(8)(Fn(g) — 9§ Fin(g9)) du(g) = 0. Therefore £y, (gp) = " Fu(g)-
That all F,,, are invariant eigendistributions whenewéris an invariant eigendistribution
follows immediately from the unique decompositionfof a

Proposition 10.11. Let f, h € C(SU, ,). Then there exisf, i € C(U,, ,) such that

/ f(@h(g) du(g) = / F(@h(g)du(g),
SUp.q Upg
wheredu is the Haar measure on the respective group

Proof. As in Proposition 10.9f = fo+ --- + fa_1 € CZSY, ) andh = ho +
<o+ hy_1 € CE(SU, ) such that fork # 1, fSUMfk(x)h,(x) du(x) = 0. Extend every

function f; andh to functions f; andhy in C (U, ,) such that forr € T, g € SU, 4,
and 0< k <n —1, fi(g¢) = ¥ fi(g) andhy(g¢) = c*hi(g). Consequently, one has for

k#L fy,  fu®hi(g)du(g) = 0. Definef = fo+--+ fi—randh = ho+- - +hy-1.
Then, for anyf, h € CZ°(SU, 4),

n—1 n—1 _
/ f(g)h(g)du(g)=2/ fk(g)hk(g)du(g)ZZ[ fe(@0)hi(g¢) din(g)
SUp4 k=0 SUpq k=0 SUp.4
n—1 - e
=> f Fu(@hi(g) du(g) = / f@h@)du(e). O
k=0"Ur.q Up.q

Remark. LetH;, 0 < j < p denote the Cartan subgroupggf ,. One has then thaf; =
H; N'SU, ,. Similarly, the Cartan subalgebras of U, , are such thalj; = h; Nsu, ,.
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One has following correspondences:

SUPJI UPJI
(h(jyas -5 hijn)s hijpr---him =1 (hjpyas - hijn)
< B B ) < ] 9 >

dyghr WG/ dxgpr T Axgm )

3 3 1 ( 3 3 )

= - = +- 4 ; x(hk = In(hju), 1<k=<n

AWyGrk  OxghHk  n \9x(j)1 0X(j)n / ’

0 i)
3y it g, =0 lsk=n
U1 oo Ui W), -5 U(jyn)

U jy = UGk — ;L(Mo)l + -t ugi),

/ / —
gt ugy =0 lsk=n

For j # 0, the parameters that describe the representatians @an be given as

(ML -+ s MG p—js OG)p=j+1s -+ > T p+js M) p+j+ls - -5 M(j)n)s
whereo ;) is given in terms ofjy; as in (8.2) o(j)p+i = 0(j)p—i+1, i =1,..., j,and
ML Z s Z MGp—j Z MGptj+l Z o Z My With mjy € Z.

Letm) = mr+ - +m)p + mp+j+1 + - - - + m(). Then by extending the re-
lation F,,;(92) = 1w, (2) Fu,;(8), 2 € Z(SU, ) for SU, , to U, 4, one hasF,, (g¢) =
("D Fei(8), ¢ € Z(Up4), g € Upq. Now, for any fixede € Z, let m’(j)k = mgk +
eforl <k < pandp+j+1<k < n Let a); (and hencezzrj’.) contain the
representations described by the paramet%:;k. Then one has from the definition of
Fojy Frpr(8) = (det(g))waj(g), g € Upy. Hence forg € SU, , and for anye €
J
Z, F, (g) = Fyu,;(g)- This means that the representati@p%, ”H}) € a)/] and(p;, H;) €
' :
wj are unitarily equivalent, i.e., one of the) and one of then;,, can be made
zero. "
Theinvarianteigendistributiofi,; as givenin (10.4) is alocally summable function andis
analytic onH(’j), j=0,..., p. One can extend its domain of definitio U---UH ..
The necessary and sufficient conditions that the exteﬁg(,e'd; alocally summable function
and analytic orH(’0 U---UH/ , are given by the differentiability and continuity 8, (4 ))-
These conditions imply by (10.5) the following theorem®n

Theorem 10.12. Let the coordinates¢;, ¥ ;,zx, and z,, be defined as in(3.8).
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Then
. . 1 Rl 4
im — lim (——) EZjh))
GGV @G vE) \LaBG)p—j
. . 1 d g
= lim — lim <——> Ej(h¢y) =0,
e P MV (ivg—i
@i va) @G vGy) N OV
_ 19 \ . (/1 @ ’
i () (B Y s
@EwE) \L3B(yp—i ) i \ V(g

d " i) "
coim () - () oo
1G+0j+1~0 L\ 0Z(j+1)j+1 9Z(j+1j+1 ’ ’
+ . + .
whereg, = ¢(yp—j = OG+nj+1 £ 0andy s, == Yig-; = bG+v+1 £0.

Proof. Follows by induction onr. O

11. Explicit construction of invariant eigendistributions

The functionZ,,; introduced in Section 10 satisfies
Ew;(wh(j)) = er(w)Ej(hj)),  hy € H(jy, w e W(SU, 4, H})),

and is skew symmetric under the symmetry groips; andS,_;, symmetric under the
symmetry grouf$;, andeverunderP;. Using these properties, one can constiigthence
F;, explicitly. Define the sets

I, =1{1,2,...,n}, Ipz{il,iz,...,ip}, Iq:{ip+1sip+27-~win}:In_lpv
wherei; € I, are assumed to satisty < ip < -+ < iy < ipp1 < ipg2 < -+ <
in. FOrj =1,2,..., p, define j-tuples from the elements df, and/,, respectively, as

(a,latls s latj-1), a =12, ..., p—j+landip, ip+1, ..., ip+j-1), b=p+1, p+
2,...,n—j+ 1. Let

1 p p+1 p+2 - n
[op] = (=DP9sgn| . . B
1 12 - 1lp Ip4l Ipy2 -+ In
i1 dp e Qp_i Qp_jy1 - i
[joa =sgn| ., o ST,
ll l2 l[?—j 1, la+j—1
Ip+1 pt2 o+ ptj  dpyj+1r o In
ol =sgn| "7 7 S e
L R e T T X I
where for 1< k < p, i, € I, — {ia,iaq1. ..., larj-1} = I, such thatiy < i, <
- < z;_j, and, forp +1 < k < n, i; € Iy — {ip,ip41,...,ip4j—1} := I such that

-/ :/ ./
lp+j+1<lp+j+2<'“<ln'
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As noted earlier, the Cartan subgraipinduces discrete series representationg fer0
and continuous series representationsjfee 1, 2, ..., p. However, forj # 0, one can
also obtain a discrete representation from the continuous representation as the complex
parameters in (8.2) are chosen to be integers, i.e;ase C are chosen to be ), € Z
forp—j+1 <k < p+j. Similarly, a continuous representation corresponding to a Cartan
subgroupH,,, m # 0 can be obtained fromthatinducedBy, m < k # 0. Thusinorderto
include such representatioimsthe limit, it is necessary to introduce a parametsuch that
0 < ¢ < j < p. Correspondingly, we say that the representation tgpd (o, j) when the
replacement ofj — o) complex parameters with integer parameters has been made. Clearly,
the representation of typ@: j) is equivalent to the representation of tyae-j"), j # j'.
This implies that every non-equivalent representation can be identified®gnsequently,
a class of equivalent representations can be denoteg and a representation in this class
is parameterized by

Apg={m1, ..., Mp_,0p_o41,-..,0p,0p41s -+, Mpioil, ..., My—1},
my € Z, o € C (11.1)
suchthabt,; =0,-;11, i =1,..., j, the bar denoting the complex conjugation.

From (8.3) and (10.6), the function which is skew symmetric with respestq C
W(SU, 4, H(’j)) can be obtained as

p—J
LAE) = [o][]@n) w

oeS, j k=1
(&9i1)"i (et¢<j>1)m"/pfj
=det| : U , iy €1, (11.2)
@ or-i"n L (e¢¢(,-)1,,,-)mi},,j
where & = {1, ..., ¢%-i}, and p] is the sign of a permutation gf — j elements
{1,2,..., p— j}. Similarly, the function which is skew symmetric with respec§ja ; is

given by

q—j o
Alb(e””)z Z [a]H(@W./)k) "ptjtol (k)

0ES;—j k=1

@Voa-i) it (@)™
=det| : U ., iy € 1Ip, (11.3)
@Von) et (@Vonyn
where ¢ := {e¥4-i, ... €Y1}, and p] is the sign of a permutation of — j elements

{1,2,...,q9 — j}
Now, one can obtain a function which is symmetric with respec§;t@nd even with
respect tdP(j) as
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J

ek ig4o(k)—1 .
0 _ 3 1o () — L
Slb(ez) - Z l_[ <|ez(/>k > |ez(/>k| ot 1_[ SQMia — ip)

o€S; I=p+1

o(D<--<o(o)
o(ot+)<<o(j)

[ (E D Haton-1 @ XD Hibton-1) ¢ > 0

Y 2otk (11.4)
(e D ato (-1 @ b+a(l)—1), € < 0,

where é := {69/, &-1, ..., €1, e e72, ... e %}, ande = sgn(i, —ip)SYNt(j)k), 0+
1<k =, ti = REgn)-
The functionZ; (now denoted byE 4,) for a givenl,, is given by

Eja, €%, €, &%) = [odllop] 1, A€"),S] (€) A, (€Y, (11.5)

Ia. 11

whereA, is as in (11.1). We obtain the following theorem.

Theorem 11.1. The invariant eigendistributio,,, on SU, , (now denoted by 4,) as
given in Theorenl0.7can be now given as

Discrete series
Fiag(€?, &, e%) = <—€‘”R(h‘”)) 24,0 €, ¢)

Ay ()
(D) S 00, 5
_(A(j)(h(j)) 2[1%][,%]@ (€%), S, ()AL EY),

0<j=p (11.6)

Continuous series
FjAQ(et¢’ez’et¢) — (M) B4 (el¢7 &, e“ﬂ)

Ay (hjy)
€Hr((j)) . .
<Ammuﬂ>§:b%HNH’A@)IS(émh@ ), 1<o0<j<p,

1,1
(11.7)

wherefor0 <o < j < p, Ag = ApWithmg =l —(n—k), k=1,....n, I3 > --- > I,.

Thus the leading term o ; is [Tx(h ;)™ which, when divided byAj (h(;)), gives
one of the desired leading terfpf, (i(;)x)™* for the characteF; 4, in terms of the highest
weights A,, given by (11.1). The expression for the discrete series yith 0 has also
been obtained in [4,19-21].

Example. Whenp = ¢ = 1, i.e,, for the grouSU; 1 = SL(R) = SO1, we have
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0 < ¢ < j < 1. The Cartan subgroups are given by

g’ 0
HOZ{( 0 etqbl)a ¢1€R},

and

et 0
H1:{<O e_tl), tle]R}.

All the three caseéj = o =0; j = 1,0 = 0; j = o = 1) can be determined from (11.6)
and (11.7), and we get

@mif1 e lmat]

Fn, (€Y = —————sgn(n),

o1y —
FOI’Vll(et ) - ed) |gl _ e_t1|

1 g1’
et)\lt]_ + e—tkltl

R F T

These special cases closely agree with the results [14] obtained by direct computation
for SUp 1. For the groupSW, », there are six character functions given By,, F14,,

Fopg, Fray, Faaq, Faa,, WhereAg = {m1, mp, ma}, A1 = {m1, o2, m3}, Az = {01, 02,

o3}, or = (A, rr). These functions can be directly determined from (11.6) and (11.7).

Theorem 11.2. The eigendistribution#’; 4, are locally summable functions and are ana-
lyticon Hy U --- U H,,.

Proof. One must show that the functiois; 4, satisfy the conditions given in Theorem
10.12. From Egs. (11.2)—(11.5), we get

(E_ d )r A(e‘¢<f>)
L 9P p—j /1,

1 93 r
- (__> det
L OP(j)p—j

o miy;
@) (@on) D

mg ... m; ...,
@or-"0n o (@or-iy V-
PGy LLetoran

= Z [0a](m{ )y gfu+ni+1m ey det

ael,

Bop-i-impy - QPO

e

i € I,
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1 0 r
T ) ALEYD)
( ! W(j)q—j) &

. m; .,/
@Y="k (@Voa-iy DR
1 0 ’
= <_— det
LAY (g - . C -
(eViz) Uk N CAKUL RS
e”/’(j)q—j—lm(j)k’z’ e”/’(/)q‘-/"lm(j)kg,j,l
= Z[aﬁ](mfj)ﬂ glurnirmon)det| S ’
Belp ell/f(/)zm(j)k/z/ o e“/’<./)2m(j)k{’1’7jil
ké e I,
a" a" P ( )
_ e =m' .. —m". G+vj+1matmp
9z ] 97" . ] Alb(ez) - (m(])a m(])ﬁ)et ’
(G+Dj+1 G+hj+1/,
ae€ly, Bel,
where
./ -/ ./
l .. l . l .
1 p—j-1 ‘p—j
[oa] = sgn( o o ) ,
ip e i g A
/ / /
3 kz kg—j-1 kg
[Uﬁ] - Sgn k// . k// ﬂ ’
2 q—j—1
satisfying br] - [oa] % [05] - [0] = [0a.a] X [0%,4], Where
i1 o0 lg—2 lq—1 g dg41 **+ la4j=2 la+j—1 fatj = Ip
[Ua,a] =sgn i i il Y o i N
1 a-2 iq la+1 la+2 latj—1 a+j p
Ip+1 -+ Ip—2 Ip—1 I Ip41 ** Iptj—2 Iptj—1 Iptj - in—-1
[Gb’ﬁ] =sgn i e Kk K K B i
p+1 b—2 ip ip+1 ip42 Iptj—1 b+j n—1

Hence one can see that the functidfis,, (¢, €, &%) thus obtained indeed satisfy the
conditions given in Theorem 10.12, and that the distributidfs on SU, , defined in
J

Theorem 10.5 are invariant eigendistributions satisfying Proposition 10.6. O

12. Tempered invariant eigendistributions

We now show that the invariant eigendistributidfg and7, . aretempered1,11-13].
J J
Let, as beforeX be a maximal compact subgroup 8t, , anda, (see Section 3) be
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a fixed maximal abelian subspace jof Define a norm orsu, , by putting 1X]2 =

—B(X,0X), X € sup,, (see Section 2). Then sin®J, , = KA,K, A, = €%, there

exists a unique functiomr on SU, , such thabr (kigk) = o (g), k1,k2 € K, g € SU, 4

ando (€**) = | Xpll, Xp € ap, choosek € K anda € Ay such thataka = k, and for

g1, g2 € SU, 4, one obtaing (a 1) = o (k~1ak) = o (a) ando (g182) < o (g1) + o (g2).
Now, forg € SU, ,, define

b (g) = / &5 00 gy (),
K

wherep = %Zaemma“ (see Section 3)u,, being the multiplicity of the weight, eX» e
Ayp. @ is nothing more than the zonal spherical functiorsah , corresponding to the trivial
linear function omy,. Since any two maximal abelian subspaces afe K -conjugate® is
actually independent of the choice af. It is well known that the functio satisfies the
following properties:

1. ®(e) = e, P(kigke) = ®(g) = P(g7 ), ki, k2 € K, g,e € SU,,, e being the
identity element.

2. D(g1)P(g2) = [ P(g1ka) duu(k), g1, g2 € SUp 4.

3. #(a Y = d(k1ak = @(a), a € Ay andk € K such thabka= k.

4. There exist numbers d such that for any: € Ay = % ®a) < cerin@)(1 4
o (a))?, wherea) = {X, : a(X,) > Ofor alla in the positive Weyl chamber ixy,}.

5. There exists a number> 0 such thatfsup‘qcbz(x)(l +o(x)"du(x) < oo.

6. There exists a number> 0 such that (see Section ﬁu,,,q |Dy—1(x)| Y20 (x)(1 +
o(x))"du(x) < oo.

For f € C*(SU,4), D € D(SU,,) andr > 0, we define a seminorrf|p,, =
SUR,esu, , IDf(g)|(1+ o(g))’(b‘l(g). LetS(SU, ,) denote theschwartz spag&onsisting
of all functionsf € C*°(SU, ,) such that| f||p , < oo forall D € D(SU, ;) andr > 0.
One usually topologizeS(SU, ,) by means of the set of seminorig| p,, which make
S(SU,, ) a Fréchet space. Clearly°(SU, ,) € S(SU, ) is a continuous inclusion, and
C(SU, ,)isdenseis(SU, ). Also, theinclusios (SU, ,) € £2(SU, ,) is continuous.

Let §;(SU,4), 0 < j < p denote the set of all functiong € S(SU, ) such that
S;(SU, ) is a closed subset &(SU, ,) for eachj, andS(SU, ,) = &;S;(SU, ), the
sum being smooth. LéT; denote the projection &f(SU, ,) onS; (SU, ,) corresponding to
the above direct sum. Then by smoothnégsare continuous endomorphismsSu, ;).
Let H; denote the closure &, (SU, ,) in the Hilbert spacé{ = £L2(SU, ). ThenX is
the orthogonalsum ok ;, 0 < j < p,andli; f, f € S(SUY, ,) is actually the orthogonal
projection of f in # ;.

Now, taking In in (3.7), one finds that the vector part ofAy)) is given by the matrix
with 7, = PR(zx) at the position given by thep — k + 1)th row and(p + k)th column and
also at the position given by thg + k)th row and the p — k + 1)th column, and having
all other entries zero. Hencelif;, € H; then we have

o(h(j) =21t + - + 1512 (12.1)



50 R. Wilson, E. Tanner/Journal of Geometry and Physics 41 (2002) 13-56

showing that the mapping;, > (o (h(;)))? is a quadratic form 08U, ,. As defined
generally in [10-12], a distributio® on SU, , is called tempered if it admits a unique
continuous extension to the Schwartz sp&¢8U, ,). It has been proved that an invariant
and3-finite distribution® onSU, , is tempered if and only if we can choose- > 0 such
that| D,—1(g)|1Y210 ()| < c(1+0(g))" Vg € G.Inotherwords, if H;} denotes a maximal
set of mutually non-conjugate Cartan subgroupS\df ,, then the above condition implies
that

sup (1+ o (h(j)) " IDu1(h(i)IY21O (h(jy)| < o0. (12.2)
h(j€eH;

Furthermore, if® is tempered, thew (f) = fo(g)@(g) du(g) for f € S(SU, ).
Theorem 12.1. The invariant eigendistributiof,,; determined by

Eja,(hijpy) = €y h(i)An; (h(j)Tw; (hjy),  hy € Hj, 0<j<p
is tempered if and only if there exists a positive integer r such that for every |

2 2
(1 + \/2(’0)1 Tt ’(m)) 154, (hj)l
is bounded by some constant, whegpg. = R(z¢juw) forl <k < j.

Proof. Follows from (12.1) and (12.2). O

13. Invariant eigendistributions of contragradient representations

Let g — p;(g) be anirreducible unitary representationSif, , on a Hilbert spacé{ ;
andp; € w; € £(SU, ), where&(SU, 4) denotes the set of all equivalence classes of

irreducible unitary representations 8b, ;. LetgT ¢ SU, 4 denote the inverse of trans-
posedg. Let H denote the topological dual @1, H being equipped with the topology

of bounded convergence. L’(!'elt;r

which the ruleg — ,OJ'(gT)(p* defines a continuous map 8tJ, , into 7—[}“ The spacéi;r

be the subspace G{;‘. consisting of those* < 7—[7 for

is closed m’H;‘ and the mapping — p; (gT) defines thecontragradient representation
of g — p;(g)on H;r We denote the contragradient representatio@y%j) (or simply
p;.r). If Tp; (8) is the character of — p;(g), then the charactdi’pt (g) of its contragradi-

ent representation is given byT (8) = Ty, (gT) = T,,(g), where the complex conjugate
elementg of g is conjugate tch under some inner automorphism&t,, , .

Theorem 13.1. Let T, o(€, €, &¥) be the invariant eigendistribution of an irreducible
J

unitary representatiog — p;(g) in the discrete serie@? of SU, ,. Then the correspond-

ing contragradient representatiog — p; (gT) is also in the discrete series; its invariant
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eigendistribution is given bgr;(e*“?’, e, e ) and is specified by the integer param-

] . .
eters{—mjn-1, —M(j)p—=2, -« 5 —mjy1} satlsfylngm(j)l > my2 > o0 > MGp and
M@GHp+1 = MG)p+2 = =+ > M(jn—1.

Proof. Ash;y ~ hj), where

h(jy =diag@?ir, ..., &Pur-i Ui, . Wl e i, . e,
eVia-i . . eV},

h(jy =diagle™ 0, ... e Pur-i Wi, .. el gL, e,
e Woa-i .. e Wuny,

one conveniently chooses from Section 11 that+ {n —k : k € I,,} .= I,T. The negative

sign in each exponent can be absorbed with the parameters .. ., m(j, determining
the character. A suitable ordering may be obtained flfgfuj)fn (see Section 2). From
Theorem 4.3 and from (4.9) and (4.10), we havig (hj)) = (—1) 2= Ay (h ;)
ande(jr(h(j)) = (=1’ €)r(h(;)). Furthermore, from Section 11 one defines the following
permutations:

[op] ~ (=1)P4 Psgn L b Ol [0 11,
n—ip1 -+ N—lgy1 N—ig -~ n—I1 p
[0,] sgn n—ip o n—ipq42 N—lpqt1l " N—ip_q—jt2 N —ip_q—j+1 ~-- N — i1
iO,
g n—il_4 - n—ij n—i, c R — g1 nfi’p ~~n7i(’l+j
- (_1)/'(P*j)+(l/2)j(j*l)[J.oa] - [aaT]’
[ ] sgn n—ip_1 - N —lp_pp1 N —ip—p - n_infbfj#»l n_l‘nfbfj n_ierl
i O,
s Me—if g e n—ilg m—iy e m—ipyi1 =iy e n— i
= (~1)] @I DHA2IGD g1 = (o],
Consequently, we obtain
—m —m, ...
@on) Do (@bun) o0

1, A(e™?) = det : :
@iy " Dpei L (@ba-iy "0
(et¢<j)1)_’”<i>i1 (e‘¢(j)1)_m(j)i;7j
— (—1) D= r=i~Dget : : :
@Pr-i) "L (@iy P

— (_l)(1/2)([?—j)(17—j—1)10A(elffJ)
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with

TMiy > MGy > > MGy OF My > Mgy > > Mg

(e”p(j)qu)_m(j)ir/z—l e (el'ﬂ(j)qu)_m(j)i/p+j+l
A, (e7V) = det

@Voz)y "D @Yy D

(e‘%m—./)_m(“"}»+./+1 (e”//(j)q—j)_m(j)i;z—l
— (_1)(q—j—1)(q—j—2)det .

(etw<,->z)7m(-")";+j+1 @Yy W

— (_1)(1/2)(q—j—1)(q—j—2)A]b Cad)
with

> > =m0 megy

— My N > —My s
Dipyj Dipyjr2 n—1

Z MGy = m(j)i;)+j+1'
s (&) = (—1)/, $9 (&
1,57, (&) = (=171, 5}, (€).

Substituting the above, for a givdﬁ, in

T & ooy (R () T T iy o0 7 —y
T , €, = | - E A SY (6)A ,
o9 ° (AH,-(hm) a,b[Ua][Ub]Ia @ i@ e

one obtains the desired result. O

14. Adjoint of invariant eigendistributions

Letg — pj(g),g € SU,, be an irreducible representation 8tJ, , on a Hilbert
spaceH ; so thatp;(g) € Aut(H;). Then, wherep;.‘(g‘l) denotes the adjoint operator of
p(j)(gfl), the homomorphisrg — p;‘ (g~ Y is also anirreducible representatiorSid, ,
on ;. The representationg — p;(g) andg — ,o;f(g‘l) are equivalent if and only if
there exists a non-degenerate continuous Hermitian inner prod@¢f arhich is invariant
underp;(g), g € SU, 4. Let T, be the distribution corresponding to the character of the
representatiog — p;(g) of SU, ,. One defines its adjoint distribution, denotedmf,

by

FOOT}, () da(x) = conj { fs AL du(x)} :

SU, 4



R. Wilson, E. Tanner/Journal of Geometry and Physics 41 (2002) 13-56 53

where f*(x) = f(x~1), du(x) is a Haar measure 08U, ,, and confa} denotes the
complex conjugate numberof a € C. A distribution7,,; on SU, , is called self-adjoint
if T, = T,

oj
Lemma 14.1. Tu’jj, 0 < j < pis aninvariant eigendistribution on SLJ,.
Proof. Let us use the notation of Section 10. et 3, and let; € Z(D(SU, ,)) be the
differential operator 05U, , defined by, forf € C°(SU, ), Gf)(x) = conj{(f)(x)},

where f(x) = conj{ f(x)}. Clearly,j € 3,a; = aj; for anya € C, andj13z = 3132 for any
31,32 € 3. Now, forany f € C°(SU, ),

GFH@) =3(f(x™h) = conji3f(xH} = conj{ G H} = GH*(x).
Therefore, replacingby 3 one hag(f*) = (3f)* V3 € 3, and from (see Proposition 10.6)
(370,)(f) = Xw;(3)Tw; (f) we get

OIS =T5,GN = [ GHEITS 0 duco)

Up.q

=00ni{/ (3f)*(X)Tw,-(x)du(x)>
SUpq

=COHJ'{/SU GfHX) Ty, (x) dﬂ(x)} = conj{Tu, Gf ™)}
(]
= CoNj{ T, ) (f*)}=CONj{xw, (3) T, (f ")} = CONj{Xw, (3)} CON{ Toy, (£*)}

— conj{x.,; (3)} conj { /S ST 00 du(X)}

= coNj{xo; (3)) [S " FTy, (0) du(x) = conjxe; )T, (f)-

FurthermoreT* is clearly invariant. Thu§* is an invariant eigendistribution with the
infinitesimal character, denoted by; € H0m(3 C), of ,o given byxw (3) = conj

{Xo; ®)}- O

Lemma 14.2. T;jj (8) = Tw, (gH.0<j<p,geSyU,,.
Proof. By the definition of adjoint distribution one has

FO)T, (x) du(x)
SU, 4

SU, 4

= conj { fs AL dM(X)} = conj{ FEDT,, () du(x)

=conj{ mTw_i(x_l)dM(X)}= f f(x) conj{T,,, (x~H} dpe(x).
SU, 4 SUp.4
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Hence, one obtaing} (g) = conj(7,,, (g hH) Vg € SU,,. O
Lemma 14.3. E7a, () = conf{Z;a,(h(j))} h¢j) € Hj,0< j < p.
Proof. From (10.5) and from the above result, since
conje(jrih ))AH,(h ))} = €(R(nj)AH; (hj)),
one has immediately th&}, (h(;)) = conjZ;4, (h(*j))}‘v’h(j) € Hj. O

Proposition 14.4. T,,, is self-adjoint if and only ifT(jj/_ (g) = conf{Ty,, (g HLo0<j <
p.g € SU, 4. i.e., if and only ifZ; 4, (h(j)) = CONj{Z 4, (h(‘j%)}, h(;, € Hj.

Proof. The proof follows from the definition of self-adjoint distribution and from Lemmas

14.2 and 14.3. O
Proposition 14.5. Ifu(j) = ("(/)1’ e (m 1) corresponds to the infinitesimal character
Xoj of Ty, , then that ofT* is given byu = = (H1s - ..,?(j)n_l), and, for someaw €

W (sl,(C), f),) = §,,0ne has thau’.- w(uj).

Proof. Follows immediately if one takes the complex conjugation operation on Egs. (8.2)
and (10.8). O

An infinitesimal charactey.,, (oru )) is self-adjoint |wa () = Xw;(3) V3 € 3, 01
equivalently, ifx (u/ ./>) =X Al))‘v’/’\.’ e 6(51 (C)). Hence from Proposition 14. 5
self-adjoint if and only ifu’(;, = w(uy ;) for somew € S,.

Let ‘I(u’(j)) denote the set of all invariant eigendistributionsSid, , and Ietfs(uzj))
denote its subset consisting of all self-adjoint invariant eigendistributions. Analogously, let
ﬁ(“b)) be the set of all functions'; 4, (which are analytic oi#/;) satisfying Eq. (10.8), and
ﬁs(u(j)) be its subset consisting of &l 4, € ﬁ(u ) functions satisfying the condition

Ta,(h(i)) = Eja, (h(j))- By Lemma 14. 2the adjon’itw is an element of (u( ;). Hence
Ta’)j =3(T,; + Ty) andT,) = (1/2/=1)(T,, — T, ) are inTs(uy;)). Thus we have the
following theorem.

Theorem 14.6. Assume thau/( is self-adjoint. Then any distributiof},, € ‘I(u(/)) is
expressed uniquely &, = Taﬁj + /= Ta’j , whereT;, . T,] € Ts(u j))- Analogously,

Wi’ Twj

any functionz; 4, € ﬁ(u;j)) is uniquely expressed @ 1, = /A +V-187, Where

5 B '
Ejp B, € Rolu;)).

Remark. Inthe representation theory of Lie algebras one comes across unbounded opera-
tors. The Hellinger—Toeplitz theorem implies that unbounded self-adjoint operators cannot
be defined in all of the Hilbert spack. One therefore has to associate with every un-
bounded operato® its domain of definitionDx (e.g., the Garding domain). B+ is
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dense irH, then one define®**, called the self-adjoint extension &% If O** = O* then

O is said to be essentially self-adjoint. Following the Nelson—Stinespring theorem [29]
one can show that for every elliptic elemefias elliptic differential operator) of the en-
veloping algebral(s/, (C)), the (algebraic) representation operdltok) is essentially self-
adjoint.
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